Spectral and Directional Reshaping of Fluorescence in Large Area Self-Assembled Plasmonic-Photonic Crystals

Boyang Ding1, Calin Hrelescu1, Nikita Arnold1, Goran Isic1,2, and Thomas A. Klar1

1. Institute of Applied Physics, Johannes Kepler University, 4040 Linz, Austria
2. Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

NOTE:
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters, copyright © American Chemical Society after peer review and technical editing by the publisher.
To access the final edited and published work see Nano Letters 13 (2), 378 - 386 (2013)
Abstract:

Spectral and directional reshaping of fluorescence from dye molecules embedded in self-assembled hybrid plasmonic-photonic crystals has been examined. The hybrid crystals comprise 2-dimensional hexagonal arrays of dye-doped dielectric nanospheres, capped with silver semi-shells. Comparing the reshaped fluorescence spectra with measured transmission/reflection spectra and numerical calculations reveals that the spectral and directional reshaping of fluorescence is the result of its coupling to photonic crystal Bloch modes and to void plasmons localised inside the silver caps.

Keywords: Plasmonic Crystal, Fluorescence Reshaping, Localised Surface Plasmon Resonances, Bloch Modes, Void Plasmons, Purcell Effect
An important aim of contemporary nanophotonics is to route and manipulate light by using nanometer length scale structures made of dielectric, metallic or hybrid materials. Such architectures create a structure-defined complex dielectric environment that interacts with electro-magnetic waves in various ways, depending on the specific configuration of the nano-structures. For example, light can be localised in a sub-wavelength volume close to nano-metallic objects like noble metal nanoparticles due to the collective oscillations of electrons known as nanoparticle plasmons (sometimes also called localised surface plasmons).\(^1\) Another example is a photonic crystal (PC) which is an architecture with spatially periodic variation of the dielectric permittivity. Light within a certain frequency range cannot propagate in a PC due to the opening of a photonic bandgap.\(^2\text{–}^4\) When 2-dimensional (2D) PCs are made of noble metal, the periodically modulated complex dielectric function of the metallic structures allows for the excitation of surface plasmon polaritons (SPPs) propagating along the metal-dielectric interface\(^5\text{–}^7\) due to the diffractive coupling into these modes which is otherwise forbidden for flat films due to wave-vector mismatch between the photons and the SPP. Such structures show distinct dispersive features in their transmission\(^8\) and reflection\(^9\) spectra.

If light emitters, such as quantum dots, dye molecules or conjugated polymers are placed in the vicinity of metallic nanostructures, fluorescence and the resonant modes of the system start to interact. As a result, the optical properties of light emitters can be influenced in many aspects. For example, the fluorescence lifetime can be manipulated\(^10\) and the emission can be spectrally reshaped\(^11\text{–}^{15}\) or spatially redirected.\(^14\text{–}^{19}\) Similar ways to manipulate fluorescence have also been shown with dielectric PCs: the lifetime of fluorescence,\(^3\) the spectral shape,\(^12\) and also the direction of emission\(^12,^{20}\) can be altered. Moreover, the optical feedback provided by the dielectric PC\(^21\) or periodic metallic gratings\(^22,^{23}\) may initiate amplified stimulated emission and lasing.
Plasmonic photonic devices can be used in the field of photovoltaics, metamaterials, waveguiding and bio-sensing, and actually large area structures are necessary for many real life photonic and optoelectronic applications. Unfortunately, up to now many plasmonic structures with precise geometry are mostly fabricated using electron beam or focused ion beam lithography. These techniques, nevertheless, are also characterised by high cost, complicated and slow manufacturing processes and limited sample area. In order to overcome these shortcomings, nanosphere lithography (NSL) has been used to fabricate large area grating-like plasmonic structures. Specifically, NSL is a lithographic technique using self-assembled opal-based colloidal PCs as templates to produce plasmonic architectures. Plasmonic structures prepared by the NSL approach can be regular arrays of metallic pyramids, spheres, and nanodisks on various substrates. Combined with electro-chemical deposition, an array of void-like nanocavities can be fabricated using hexagonal crystals of nanospheres as sacrificing templates on a gold film. Their optical properties are usually characterised by both, the excitation of non-dispersive localised surface plasmon resonances (LSPRs), and travelling SPPs, which can be excited via momentum transfer of a reciprocal grating vector. Because of that, the latter are sometimes also called Bragg plasmons.

In this letter, we report for the first time the measurement of the transmission, reflection and fluorescence emission spectra from the same sample. The samples are 2D hexagonal plasmonic-photonic crystals, self-assembled from dye doped polystyrene (PS) spheres on glass substrates, which are optionally capped with plasmonic silver voids (Figure 1 a,b). Other than the traditional NSL, we do not remove the fluorescing spheres. As a result, we can investigate the spectral and directional reshaping of the fluorescence by the Bloch modes of the PC without silver capping. After the optional evaporation of a semi-transparent 40 nm silver layer forming silver caps on the spheres, we can study an additional coupling of the fluorescence to the
void plasmons inside the caps. In total, our structure forms a hybrid of fluorescing species, and a hexagonal dielectric PC made of PS spheres sustaining distinct Bloch modes.4,38 The interconnected silver nanocaps support the Bragg modes of travelling surface plasmons as well as LSPRs.39–41

Because the substrate is glass and the silver caps are semi-transparent, we can study both the reflection and the transmission spectra of the hybrid samples. This allows us to deduce in detail which spectral and directional reshaping of fluorescence is due to a coupling of the fluorescent emission to the PC Bloch modes, to the Bragg plasmons and to the localised void plasmons inside the silver caps. We find a dispersive coupling of the fluorescence to the PC Bloch modes (which are also present in the samples without silver caps) and a distinct non-dispersive coupling to the void plasmons in the Ag caps. However, a coupling of fluorescence to Bragg plasmons seems to be weak in our samples. Previously, it has been shown that the reflection spectra of metal-capped nanosphere PCs differ greatly when collected from the metal coating side or from the substrate side.42 We now find that also the fluorescence couples to the PC Bloch modes and the LSPR in a very different way, depending on whether the emission takes place into the half space above or below the substrate. Finite difference time domain (FDTD) simulations of the LSPRs in the metallic caps and frequency domain simulations of the Ag-capped PCs (full-fledged periodic structure) support our conclusions.

Previous studies lack the full flexibility to measure fluorescence emission, transmission and reflection on one and the same sample. Lopez-Garcia et al.43 reported directional reshaping of fluorescence from dye-doped PCs of PS spheres on a flat gold layer. No metallic caps were applied and the sample was not transparent, so no comparison of the fluorescence and the transmission spectra could be made. Sugawara et al.44 reported on the strong coupling of
void-LSPRs, Bragg plasmons and molecular excitations on a non-transparent sample. A similar structure was investigated by Jose et al. They observed an enhancement of the excitation of the fluorophores rather than a manipulation of the emission. But again, no transmission spectra could be retrieved because of the use of non-transparent samples.

Our hybrid plasmonic-photonic crystals containing green dye molecules were fabricated by the following procedures (Figure 1a): A hexagonally packed 2D PC of PS spheres loaded with dye molecules (Thermo-Scientific, Waltham, MA, USA, sphere diameter $d = 390$ nm, dye: “Firefli* Fluorescent Green”) was deposited on a glass substrate using self-assembly as reported elsewhere. The extinction and emission spectra of the dye molecules in a PS film and in PS spheres are shown in the supporting information (Figure S1). A silver film of 40 nm nominal thickness was evaporated on the freshly crystallised 2D PC. The typical sample size was about 2–4 cm2. The geometrical parameters (the diameter of the PS spheres and the thickness of the Ag film) are carefully chosen, so that the optical responses of the hexagonal structures can match the emission band of the dyes. The metal film acquires the shape of caps on top of the spheres as shown in Figure 1b. These silver caps are partially connected with each other, forming a 2D periodic array of semishells with a hexagonal lattice. In addition, a small amount of silver was evaporated on the glass substrate through the interstices between the spheres, forming a regular array of silver pyramids. Two reference samples, an unstructured dye-doped PS film (henceforth denoted as unstructured film), and a hexagonally packed monolayer of dye-doped PS spheres without silver coating (henceforth called bare PC) were prepared and compared with the silver coated PC (Ag-capped PC). The unstructured film (thickness ~ 3 µm) was made by dissolving the dye-doped PS spheres using toluene, and then spin-coating the dissolved solution on a glass substrate.
Figure 1 (a) Schematic of the hybrid plasmonic-photonic crystals. (b) Upper left panel: the Brillouin zone of the hexagonal lattice; SEM images of the hexagonally packed monolayer of dye-doped (PS) spheres coated with silver caps viewed from the top (left and right lower panels) and a closer look under 45° (upper right panel). Metal pyramids on the glass substrate are indicated by the white triangle in the upper right panel. (c) Schematics of the experimental set-up for angle-resolved fluorescence measurement and transmission/reflection measurements.
The angle-resolved transmission and reflection (T/R) measurement of the samples were performed using a setup previously reported37,42 (see Figure 1c, lower scheme). Samples were illuminated by white light from a tungsten light source which is collimated to 1 mm in diameter. The T/R spectra were acquired under s- and p-polarised light, defined as the electric field being perpendicular or parallel to the plane of incidence, respectively. Angle-resolved T/R is measured at distinct angles θ to the sample normal using a spectrometer (B&W TEK, BRC112E-V). θ is varied from 0 to 80° with a step size of 5°. Angle-resolved fluorescence spectra were taken using a similar set-up shown in the upper scheme of Figure 1c. A pulsed diode laser (Picoquant, LDH-D-C-405, $\lambda_{\text{exc}} = 404$ nm, 70 ps pulsewidth) was used to excite the dye molecules from the glass substrate side with a fixed angle of incidence $\alpha = 5^\circ$ to the sample normal. A $\lambda/4$ waveplate is used to convert the linearly polarised laser beam to a circularly polarised one, in order to equally excite all the dye molecules with different orientations. The angle-resolved fluorescence into the air side of the samples as well as through the glass substrate side is collected at different angle θ (with respect to the sample normal, as for the T/R measurements). Unless otherwise indicated, a polarisation analyser is placed in front of the spectrometer, in order to pick the s- or p-polarisations of the fluorescence emission.
Figure 2 (a) Measured fluorescence emission at $\theta = 0^\circ$ (normal to the surface, unpolarised) of dye molecules in samples of an unstructured PS film (dashed black), a bare 2D photonic crystal of dye doped PS spheres without metallic caps (red), and of the Ag capped photonic crystal into the air side (transmitting the Ag caps) (green) and into the glass substrate side (blue). (b) Normalised fluorescence spectra from (a), same colour coding. Schemes above the graph visualise the directions of excitation and detection.

The fluorescence spectra normal to the surface ($\theta = 0^\circ$, unpolarised) from the unstructured film, the bare PC and the Ag-capped PC are shown in Figure 2a. In all cases the excitation beam impinges through the glass substrate and the emission normal to the substrate is collected towards the air side. In case of the unstructured film and the bare PC samples, the fluorescence spectra do not depend much on the direction of the fluorescence, i.e., whether it is taken towards the air side or through the glass side. Hence, we only show the fluorescence to the air side in case of the unstructured film and the bare PC sample. However, in case of the Ag-capped PC sample, a major difference is observed for these two normal emission directions and hence,
spectra for both normal directions are shown (see schemes above the graphs of Figure 2). The fluorescence of the unstructured film exhibits an emission from roughly 450 to 650 nm. The unknown density of dye molecules in the unstructured film makes it impossible to directly compare the fluorescence intensity of the unstructured film with the intensities of the other two samples. However, the fluorescence intensities of the bare PC and the Ag-capped PC can be directly compared. We find that (1) the fluorescence from the Ag-capped PC is much weaker for both directions as compared to the fluorescence from the bare PC and (2) the fluorescence from the Ag-capped PC directed towards the glass side is higher than the fluorescence towards the air side of the sample. The peak-normalised fluorescence spectra of all samples are compared in Figure 2b, where a clear spectral reshaping of the emission from both PC samples (bare PC and Ag-capped PC) can be observed. The peak-normalised fluorescence spectra of the PC samples exhibit specific features at particular vibronic sidebands of the dye molecules, a clear indication of a Purcell type effect. In case of the Ag-capped PC this spectral reshaping differs for the two counter-propagating emission directions.
Figure 3 Comparison between the experimental fluorescence and reflection/transmission. Fluorescence reshaping factors for s- and p-polarisations for the bare PC sample (a), for the Ag capped PC sample to the air side (b) and to the glass substrate side (c). The zero-order normalised transmission spectra for s- and p-polarised light of the bare PC (d) and the Ag-capped PC (e) are compared to their counterparts, the fluorescence (a) and (b). The normalised reflection of the Ag-capped PC from the glass side (f) is compared with the fluorescence into the glass side (c). All colour coded intensity plots are experimentally obtained. Black lines in (a-d) are the calculated dispersions of Bloch modes propagating in the PC. Panels (e) and (f) contain the calculated dispersions of plasmonic Bragg modes propagating at the air–silver caps interface (yellow line) and the silver caps–PS spheres interface (black lines). The dotted line in panel (c) indicates the non-dispersive feature in fluorescence spectra.
In order to gain insight not only in the spectral reshaping of the fluorescence emission, but also in the directional reshaping, we measured the emission as a function of wavelength, angle and polarisation (see Figure 1c for the setup). We denote the fluorescence intensity as $I_{\text{film}}(\lambda, \theta)$ in case of the unstructured film, $I_{\text{PC}}(\lambda, \theta)$ for the sample of bare PC and $I_{\text{AgPC}}(\lambda, \theta)$ for the Ag-capped PC sample. We then normalise the angularly and spectrally resolved fluorescence from the bare PC and from the Ag-capped PC to the fluorescence from the unmodified film and we end up with a quantity which we call the spectral fluorescence reshaping factor F (calculated separately for each polarisation):

$$F_{\text{PC}}(\lambda, \theta) = \frac{I_{\text{PC}}(\lambda, \theta)}{I_{\text{film}}(\lambda, \theta)}; \quad F_{\text{AgPC}}(\lambda, \theta) = \frac{I_{\text{AgPC}}(\lambda, \theta)}{I_{\text{film}}(\lambda, \theta)}$$

Figure 3a shows the angular dependence of the experimentally obtained reshaping factors of the fluorescence emission from a bare PC sample to the air side of the sample, F_{air}, for the angular range $0^\circ < \theta < 80^\circ$ and for s- and p-polarisation. It is clearly seen that the fluorescence from the bare PC is dispersively reshaped. Specifically, the fluorescence reshaping factor peaks at $\lambda = 485$ nm when $\theta = 0^\circ$ for both polarisations. This maximum is rather narrow and it redshifts rapidly with increasing detection angle. The dispersions for s- and p-polarisation are slightly different; specifically the p-polarised fluorescence shows the steeper dispersion. The angle-resolved transmission spectra of the bare PC sample are shown in Figure 3d. For each incidence angle θ, the transmission spectrum of the structure is normalised to its respective values at $\lambda = 900$ nm (where diffractive effects are almost negligible). This normalisation factors out the systematic increase of reflection towards higher θ and enhances the spectral features that are of interest in our studies. It has been reported that the optical transmission of
a bare PC at normal incidence exhibits a minimum at the spectral position \(\lambda = D \cdot n_{\text{eff}} \), where \(n_{\text{eff}} = 1.42 \) is the effective refractive index of the PC slab (calculated as in the reference \(^{48}\)), and \(D = \frac{\sqrt{3}}{2} d \) is the period of the hexagonal lattice (\(d \) is the diameter of the sphere). This minimum is due to the coupling into optical eigenmodes or Bloch modes of the 2D PC when the 1\(^{st}\) order diffracted waves propagate in the plane of the PC (similar to Wood anomalies). A minimum of the normalised transmission at \(\theta = 0^\circ \) is experimentally observed at \(\lambda = 485 \) nm, which agrees well with the calculated result, \(\lambda = 479 \) nm, where \(D \) is 338 nm. These in-plane diffraction resonances are angularly dispersive, which can be seen from the dispersive behaviour of the minima in the transmission spectra for both polarisations (Figure 3d). Similar to the fluorescence emission (Figure 3a), there is a difference between the dispersions of transmission minima under s- and p-polarised light. This is because when an oblique incident beam illuminates a PC, waves with s- and p-polarisations may preferentially couple into different PC Bloch modes propagating in the plane of the structure. The angular dispersions of the in-plane diffraction resonances can be calculated using the formula \(^{48}\)

\[
\lambda = \frac{\sqrt{3}}{2} d \cdot \left(n_{\text{eff}}^2 \sin^2 \theta \sin^2 \varphi - \sin \theta \cos \varphi \right)
\]

(2)

where \(\varphi \) is the azimuthal angle with respect to the \(\Gamma\)-M direction of the hexagonal lattice (upper left panel of Figure 1b). As our bare PC has macroscopic domains (right lower panel of Figure 1b), all azimuthal angles \(\varphi \) are typically present within the area of the incident beam spot. However, s- and p- polarised waves may preferentially couple to modes of specific azimuthal orientations. The best fit of dispersion using Eq. 2 results in azimuthal angles \(\varphi = 120.5^\circ \) for s- and \(\varphi = 141^\circ \) for p- polarisations (black lines in Figure 3d). These numbers are guidelines only, as the true position of the maximum is a result of azimuthal averaging of coupling efficiencies, which may even change with the angle of incidence \(\theta \). The obtained theoretical
dispersion curves are also plotted on the map of the fluorescence reshaping factor (black lines in Figure 3a). It is evident that the maxima of the fluorescence reshaping factors follow the dispersion of the in-plane PC modes. This matching strongly suggests that the fluorescence is coupled to the PC Bloch modes. The mechanism of this coupling can be understood by the increase of the local density of optical states into which the excited dye molecules could decay radiatively.

In the following, we will focus on the discussion about the fluorescence reshaping in the Ag-capped PC sample. As discussed before in the case of the normal direction of emission (Figure 2b), the fluorescence from a Ag-capped PC to the air side is more pronounced around 520 nm but less pronounced at 570 nm as compared with the fluorescence towards the glass substrate. Figure 3b and 3c show the angularly resolved spectra of the reshaping factors of fluorescence towards the air side (F_{air}) and to the glass substrate side (F_{glass}), respectively. The maximum of F_{air} is observed at $\lambda = 500$ nm for $\theta = 0^\circ$. As opposed to the clearly dispersive behaviour of reshaping maxima in a bare PC sample (Figure 3a), the dispersion of F_{air} of the Ag-capped PC sample can only be well resolved from 0° to 10° and completely vanishes beyond $\theta = 20^\circ$ (Figure 3b). In contrast, F_{glass} exhibits two pronounced features for both polarisations (Figure 3c): the first one is dispersive, i.e., the maximum appears at short wavelength (~490 nm) for normal emission, and red-shifts for larger angles; the second is a non-dispersive feature, i.e., the maximum is centred at 575 nm and is traceable within an angle range of 0 to 50° (dashed line in Figure 3c). As for a bare PC, the dispersion of the fluorescence from the Ag-capped PC sample exhibits different dispersive behaviour for s- and p-polarisations. Both follow the dispersive lines of the bare PC (Figure 3d), which are replotted as black lines in Figures 3 b,c for clarity.
The p-polarised spectra of air and glass fluorescence measured from the Ag-capped PC are shown in Figure 4 (a and b) for $0^\circ < \theta < 30^\circ$. The dispersive maximum at the interval $\Delta \lambda_1$ (around 500 nm) exists for both directions of fluorescence emission. In contrast, the non-dispersive feature (labelled by an arrow at the spectral range $\Delta \lambda_2$) is only observed in case of fluorescence emitted to the glass side. Numerical simulations reveal similar features. Figures

Figure 4 Experimental (a,b) and theoretical (c,d) spectra of the fluorescence reshaping factors. Measured fluorescence of the Ag capped PC sample for p-polarisation in the angular range (0-30°) to the air side (a), and to the glass substrate side (b). The fluorescence enhancement simulated at angles (0°, 15° and 30°) for p-polarised emission to the air side (c) and to the glass substrate side (d). See main text for details. The arrows in (b,d) indicate the non-dispersive feature, which is absent in (a,c). Vertical dashed lines in (c,d) label the spectral positions of 500 nm and 585 nm. The corresponding magnitudes of fluorescence enhancement (black crosses) are used in Figure 5, right panels.

The p-polarised spectra of F_{air} and F_{glass} of fluorescence measured from the Ag-capped PC are shown in Figure 4 (a and b) for $0^\circ < \theta < 30^\circ$. The dispersive maximum at the interval $\Delta \lambda_1$ (around 500 nm) exists for both directions of fluorescence emission. In contrast, the non-dispersive feature (labelled by an arrow at the spectral range $\Delta \lambda_2$) is only observed in case of fluorescence emitted to the glass side. Numerical simulations reveal similar features. Figures
4c and 4d show the simulated fluorescence enhancement for p-polarisation at \(\theta = 0^\circ, 15^\circ \) and \(30^\circ \) to the air side and to the glass side of the Ag-capped PC sample, respectively. Numerical fluorescence enhancement is defined as a ratio between the calculated intensity of emission from randomly oriented incoherent dipoles in a Ag-capped PC and the emission of the same dipole ensemble in vacuum. The dipole emission intensity at a specific fluorescence angle \(\theta \) and an azimuthal angle \(\phi \) with respect to a hexagonal lattice is calculated using the principle of reciprocity. Details and further discussion can be found in the supporting information, section ‘Modeling of fluorescence intensity’. One can see that the fluorescence enhancement is typically larger than 1, especially for the fluorescence to the glass side (Figure 4c,d). The experimental reshaping factors have lower absolute values, mainly because they are normalised to the fluorescence from flat dye doped PS films, which are significantly thicker than the PS-spheres monolayer. Theoretical fluorescence enhancement to the air side at \(\theta = 0^\circ \) (Figure 4c, black curve) has a maximum around 500 nm, which flattens out and red-shifts with increasing \(\theta \) in reasonable agreement with the experimental findings (Figure 4a). Similarly to the experimental reshaping factors, the fluorescence enhancement into the glass side (Figure 4d) shows an additional maximum at around 590 nm irrespective of the fluorescence angle \(\theta \).

As reported before,42 transmission spectra of Ag-capped PCs are identical no matter from which side the transmitted light is collected, whereas the reflection spectra detected from the metal coated side and from the glass substrate side are completely different. Similar behaviour of directionally dependent reflectance has also been reported recently in vertically asymmetrically stacked metamaterials.50 In our fluorescence experiment, the embedded dye molecules emit light inside the concave voids of the silver caps. As a result, the fluorescence collected at the air side of the Ag-capped PC must penetrate through the corrugated silver film, while the fluorescence detected at the glass substrate side interacts with the electromagnetic
waves of the mirror dipoles in the Ag layer. The emitted photons in the two antiparallel directions experience different optical paths, and we now want to compare them with the optical path in transmission and reflection upon glass-side illumination (see schematics above Figures 3e and 3f). Therefore, we compare the features of the reshaping factor of fluorescence towards the air side (Figure 3b) with the transmission spectrum (Figure 3e), and the reshaping factor of fluorescence towards the glass substrate (Figure 3c) with the normalised reflection from the substrate side (Figure 3f). T/R spectra on an extended wavelength range as well as reflection spectra on the air side of the Ag-capped PC can be found in the supporting information (Figure S2).

The transmission spectra of the Ag-capped PC exhibit maxima 8,36 at the spectral positions of the Bragg plasmons of the 2D lattice of silver caps, i.e., travelling SPP modes which are excited via a reciprocal vector of the hexagonal lattice. 9 There are two sets of Bragg plasmon bands 37: one is excited at the interface between the spheres and the Ag layer, and another is excited at the air-silver interface. The dispersions of these two sets of SPP bands are calculated using Eq. 2 replacing the n_{eff} with the refractive index of the SPP: $n_{\text{SPP}} = \sqrt{\varepsilon_A + \varepsilon_{\text{dielectric}}}$, where ε_A is the permittivity of silver, and $\varepsilon_{\text{dielectric}}$ is the permittivity of the dielectric (either air or an effective medium consisting of PS spheres and air). As shown in Figure 3e, the Bragg plasmon band dominates the transmission spectra of the Ag-capped PC sample. Similar to the case of a bare PC, the dispersion of the Bragg plasmon band on the Ag-capped PC sample is also polarisation-dependent (as discussed in more detail in the supporting information). In addition, Bragg plasmon bands that appear as dispersive minima can be observed in the reflection spectra of Ag-capped PC (Figure 3f). Surprisingly, we find that the spectral reshaping of fluorescence in the Ag-capped PC (Figures 3b,c) is completely insensitive to the Bragg plasmon modes.
(Figures 3e,f), but partially relates to the bare PC modes (Figure 3d). Therefore, we re-plot these modes in Figure 3b and 3c but not the plasmonic Bragg modes shown in Figures 3e and 3f. This observation is in contrast to some earlier findings11,14,15,51 on light emitters in the vicinity of periodic plasmonic structures. However, one should note that in studies where the coupling of fluorescence to Bragg plasmon modes was reported, the plasmonic-photonic crystals have been homogeneously covered with fluorophores. In our case, the dye molecules are confined within each nanosphere, i.e., the spatial distribution of dye molecules in the Ag-capped PC sample also obeys a hexagonal pattern. In other words, the majority of the dye molecules are located in the spatial regions where the PC Bloch modes propagate, and only a small fraction is in the immediate vicinity of the Ag-PS-spheres interfaces, where Bragg plasmon modes dominate. As the diameter of our spheres is larger than the typical normal spatial extension of plasmonic modes14,15, the coupling of fluorescence to the PC Bloch modes dominates, while coupling to the plasmonic Bragg modes is minor. Coupling of emission from a single dipole into a bare PC and into a Ag-capped PC is modelled and further discussed in the supporting information (Figure S3).

The additional non-dispersive maximum in the fluorescence reshaping factor at 575 nm, which is present in the fluorescence into the glass side (Figure 3c) but not into the air side (Figure 3b), suggests some interaction of the fluorescence with a non-dispersive localised plasmon. Moreover, the non-dispersive maximum can only be seen in the fluorescence through the glass substrate, correlating this feature to the asymmetric configuration of the silver caps. FDTD calculations of the intensity enhancement in a \textit{single} silver coated sphere ($|E|^2/|E_o|^2$) (that is the local field intensity normalised by the incident intensity) are shown in the left column of Figure 5 for two different wavelengths, 500 nm and 585 nm. In this simulation, the normally incident plane wave illuminates the sample from the substrate, mimicking the dye
molecules emitting from the void side of the silver cap. At \(\lambda = 500 \text{ nm} \), i.e., in the spectral range of the dispersive feature (\(\Delta \lambda_1 \) in Figure 4), the field is only moderately enhanced inside the void. On the contrary, at \(\lambda = 585 \text{ nm} \), the spectral position within the non-dispersive feature (\(\Delta \lambda_2 \) in Figure 4), the intensity is strongly enhanced, as a dipole void plasmon resonance is formed inside the silver cap. In both calculations, we assumed an electric field orientation parallel to the glass plate, i.e. we numerically probed the longitudinal void plasmon mode,\(^{34,39,41}\) sometimes also called the transverse mode in order to distinguish from the axial mode which is in the blue side of the spectrum.\(^{34,39}\) The cap-shaped plasmonic resonator can facilitate the relaxation of excited dye molecules to specific vibrational ground states if the corresponding transition is in resonance with the LSPR.\(^{13}\) LSPRs could also be excited on the array of Ag pyramids formed on the substrate of the Ag-capped PC samples. However, according to Haynes et al.\(^{30}\) and our own numerical calculations (Figure S4 in the supporting information), the nanoparticle plasmons related to Ag pyramids have neither spectral nor spatial overlap with the dye molecules confined in the PS spheres. Thus we can conclude that the coupling to the void plasmon is responsible for the non-dispersive spectral reshaping of fluorescence in the Ag-capped PC sample, providing a directional decay channel for the excited dye molecules in the void. Summing up, the spectral reshaping of the fluorescence from the Ag-capped PC is the result of a coupling to both the PC modes of the bare PC made of the dielectric PS spheres and the void plasmon modes in metallic semi-shells. These two couplings reshape the fluorescence at different spectral intervals. However, no pronounced coupling of fluorescence to the Bragg plasmon modes was observed in our hybrid samples.
Finally, we will now examine the polar pattern of fluorescence emission for both spectral intervals, the one which couples to the PC modes and the one which couples to the LSPR of the
Ag void plasmons. In the polar plots of Figure 5, we investigate both spectral regions (upper and lower lines of polar plots) for all three samples: the unstructured film (left column of polar plots), the bare PC (central column) and the Ag-capped PC (right column). The angular distribution of the fluorescence intensity for these two bands is calculated using the following formula

\[I(\theta) = \frac{\int_{\lambda_a}^{\lambda_b} I(\lambda,\theta)d\lambda}{\int_{\lambda_a}^{\lambda_b} \int \int \left[I(\lambda,\theta) \cdot \sin(\theta) \right] d\lambda d\theta} \quad (3) \]

where \(\lambda_a \) and \(\lambda_b \) refer to the starting and end wavelengths of the emission band. In our experiment, the first emission band \(\Delta \lambda_1 \), from \(\lambda_a = 475 \) to \(\lambda_b = 525 \) nm, corresponds to the dispersive PC modes, while the second band \(\Delta \lambda_2 \) taken from 560 to 600 nm, corresponds to the localised plasmonic void mode. The fluorescence of the unstructured film exhibits the same directionality as the Lambertian distribution predicts (black dots in the polar plots) for both \(\Delta \lambda_1 \) or \(\Delta \lambda_2 \). This good agreement between the calculation and experimental data manifests that the film sample is indeed completely unstructured. With the hexagonally packed bare PC, nanostructuring greatly alters the angular distribution of the fluorescence in the spectral region \(\Delta \lambda_1 \), where a pronounced forward beaming effect is observed. For the spectral region \(\Delta \lambda_2 \), the whole emission remains essentially Lambertian even though the influence of the dispersive diffraction resonances can still be seen at particular angles, i.e., \(\theta = 20^\circ \) for p-polarisation and \(\theta = 30^\circ \) for s-polarisation. The fluorescence intensity is uniformly distributed to the air side and to the substrate side. However, when the silver caps are introduced, the directionality of the fluorescence is significantly modified. The modifications are manifold: (1) much less fluorescence goes into the air side passing through the silver caps; (2) in the dispersive band \(\Delta \lambda_1 \), a pronounced polarisation dependence of the directional emission is found, and (3)
emission towards the substrate is dominant for the non-dispersive band $\Delta \lambda_2$, as the fluorescence is coupled to the void plasmons.

To compare experimental angular emission with theoretical predictions, we can use the simulated fluorescence enhancement spectra (Figure 4). Black crosses in Figure 4 (c and d) indicate the simulated fluorescence enhancement for p-polarisation at different angles $\theta = 0^\circ$, 15°, and 30°. The fluorescence enhancement exhibits various magnitudes at $\lambda = 500$ nm (which is representative of the dispersive band $\Delta \lambda_1$) and $\lambda = 585$ nm (within the non-dispersive band $\Delta \lambda_2$). In order to visually compare the angular variation of simulated fluorescence enhancement with the experimental directionality, we scale the magnitudes of the calculated fluorescence enhancement at all angles, i.e., $\theta = 0^\circ$, 15°, 30°, and 60° (not shown in Figure 4) by a common factor, which fits the experimental value to the glass side at $\theta = 0^\circ$ exactly. The values at the air side are scaled with the same factor. This is done separately for each polarisation and wavelength range. We then add these scaled values as black dotted circles and crosses to the corresponding experimental polar plots in Figure 5. The calculated angular distributions (black symbols) coincide very well with the experimental ones (red and blue symbols). For example, for the Ag-capped PC (the right set of plots), at $\theta = 15^\circ$ for p-polarised fluorescence to the glass side (165° on the plots) one can see a slight dip in emission at $\lambda = 500$ nm, but small maximum for $\lambda = 585$ nm. Both of these features are nicely reproduced by the simulations. Only in the case of fluorescence to the air side of a Ag-capped PC at $\lambda = 585$ nm, the experimental intensity is higher than the simulated one, probably because the perfectly-shaped Ag caps used in the simulations provide a better confinement of the fluorescence towards the glass substrate, while roughness on the air-side of the deposited Ag caps may contribute to the additional scattering of the fluorescence intensity towards the air in
the experiments. Taking into account the structure’s imperfections, the agreement between the theory and the experimental spectra (Figure 4) as well as the directionality (Figure 5) are quite remarkable.

In conclusion, we have designed and fabricated hybrid plasmonic-photonic crystals containing dye molecules by evaporating a metal film on a hexagonally close-packed monolayer of dye-doped nanospheres prepared by colloidal self-assembly. Fluorescence emitted from the dye molecules is reshaped spectrally and directionally both by the coupling of the emission to PC Bloch modes and to the void plasmon modes localised in the silver caps. No coupling of the fluorescence to Bragg plasmon modes has been found. Because of the semi-transparency of our sample, the reshaped emission can be detected from both sides of the sample, exhibiting different directionalities in the spectral intervals corresponding to the PC modes and void plasmons, respectively. As a result, the directionality of the fluorescence emitted from the Ag-capped PC is frequency and polarisation dependent.

These unique optical properties can be applied in many fields. One possibility would be the design of light emitting devices that allow tuneable directional lighting. For this application, our self-assembled Ag-capped PCs are advantageous over some conventional PC structured LEDs52,53 for the following reasons: (i) the relatively inexpensive and large-area fabrication process allows for mass-production; (ii) the co-existence of PC Bloch modes and void plasmon modes facilitates the directional sorting of fluorescence. As in our case, these works discuss both spectral and directional reshaping of the emission. However, none of these papers addresses the role of plasmonic modes and their interplay with the emission.
The Ag-capped PCs are also applicable in photovoltaics, e.g., as a reverse process of light emitting, the semi-transparent structures can be used to enhance light harvesting efficiency in solar cells. Additionally, Ag-capped PCs embedded with high quantum yield fluorophores, in combination with powerful pump lasers can become a good testing ground for plasmonic nano-lasers. Here, the desired spectral intervals and preferable lasing modes can be fine-tuned via tailoring the geometrical parameters of the structure.

Author Information:

Corresponding author:

Boyang Ding

Email: boyang.ding@jku.at

Acknowledgement

The authors would like to acknowledge Heidi Piglmayer-Brezina, Alfred Nimmervoll and Alois Mühlbachler for excellent technical support, and Dr. Klaus Piglmayer for discussions. This work was financially supported by the European Research Council (ERC Starting Grant 257158 ‘Active NP’). G.I. acknowledges a Postdoctoral Fellowship of the Serbian Ministry of Education and Science.

Supporting Information

The optical properties of dyes, the T/R spectra, the modeling of fluorescence intensity, and the additional discussion concerning the modelled field distribution. This material is available free of charge via the Internet at http://pubs.acs.org.
References

