Page Areas:



Current Submenu:

Additional Information:

Student Projects

Hier den Alternativtext zum Bild eingeben!

Displays Book (second edition)

Displays Book (second edition)

Displays Book (Korean edition)

Hier den Alternativtext zum Bild eingeben!

Displays Book (free ebook)

Hier den Alternativtext zum Bild eingeben!

Spatial Augmented Reality Book (free ebook)

Hier den Alternativtext zum Bild eingeben!

The Caleydo Project

Hier den Alternativtext zum Bild eingeben!

VIOSO smartprojecting

Hier den Alternativtext zum Bild eingeben!

Position Indication:

Content

Computer Vision

Lecturer: Oliver Bimber

Introduction
While Computer Graphics focusses on image synthesis, Computer Vision is all about image analysis and image understanding. It finds many applications in domains such as, 3D reconstruction, robotics, medical engineering, media technology, automatization, biometry, human-computer-interaction, contact free measurement, remote sensing, quality control, etc. This course will give first insights into the basics of Computer Vision. At the end of the semester, participants of this class will be able to apply and implement computer vision methods independently. A basic understanding of programming concepts is required. Detailed knowledge in a programming language, however, is not necessary. A sufficient introduction into Matlab is part of the hands-on component of this class. The class is structured into interleaved lectures, labs and seminars.

Contents
In particular, this course will discuss the following constitutive topics: Introduction and course overview, spatial and frequency domain processing, gradient domain processing, segmentation and object recognition, basics of cameras, geometric camera calibration, the geometry of multiple views, stereoscopic depth estimation, range scanning and data processing, structure from motion, computational photography, introduction into Matlab and Matab's image processing toolbox, introduction into lightfield processing.

Selected Readings
1) Computer Vision – A Modern Approach, Forsyth and Ponce, 2nd edition, Addison Wesley, ISBN-10: 013608592X, 2011
2) Multiple View Geometry in Computer Vision, Hartley and Zisserman, 2nd edition, Cambridge Press, ISBN: 0521540518, 2003
3) Computer Vision: Algorithms and Applications, Richard Szeliski, Springer, ISBN: 1848829345, 2010
4) Image Processing: The Fundamentals, Maria Petrou and Costas Petrou, Wiley, 2nd edition, ISBN-10: 047074586X, 2010
5) Learning OpenCV: Computer Vision with the OpenCV Library, Gary Bradski, Adrian Kaehler, Mike Loukides, Robert Romano, O'Reilly Media, ISBN: 9780596516130, 2008
6) Handbook of Mathematical Models in Computer Vision, Nikos Paragios and Yunmei Chen, Springer, ISBN-10: 0387263713, 2005
7) Machine Vision. Theory , Algorithms, Practicalities: Theory, Algorithms, Practicalities: Theory , Algorithms, Practicalities, E. R. Davies, Academic Press, 3rd edition, ISBN: 978012206093, 2005
8) Computational Vision: Information Processing in Perception and Visual Behavior, Hanspeter A. Mallot, MIT Press, ISBN: 9780262133814, 2000
9) Three-Dimensional Computer Vision – A Geometric Approach, Olivier Faugeras, MIT, Press, ISBN: 0262061589, 1993