Seitenbereiche:



Zusatzinformationen:

FUN-Veranstaltungen

FoFö-Stammtisch, 23. November 2017, 14 Uhr siehe Info-Veranstaltungen

Kontakt

Abteilung Forschungsunterstützung (FUN):
forschen@jku.at


Positionsanzeige:

Inhalt:

Forschungseinheiten

Aufsatz / Paper in SCI-Expanded-Zeitschrift

On near-ring idempotents and polynomial functions on direct products of Omega-groups

Aichinger E.: On near-ring idempotents and polynomial functions on direct products of Omega-groups, 2001.

BibTeX

@ARTICLE{
title = {On near-ring idempotents and polynomial functions on direct products of Omega-groups},
type = {Aufsatz / Paper in SCI-Expanded-Zeitschrift},
author = {Aichinger, Erhard},
language = {EN},
abstract = {Let $N$ be a zero-symmetric near-ring with identity, and let $\Gamma$ be a faithful tame $N$-group. We characterize those ideals of $\Gamma$ that are the range of some idempotent element of $N$. Using these idempotents, we show that the polynomials on the direct product of the finite $\Omega$-groups $V_1, V_2, \ldots, V_n$ can be studied componentwise if and only if $\prod_{i=1}^n V_i$ has no skew congruences.},
isbn = {0013-0915},
year = {2001},
note = {Zitatsnotiz: Erhard Aichinger, On near-ring idempotents and polynomial functions on direct products of Omega-groups, Proceedings of the Edinburgh Mathematical Society (2001) 44, 379 - 388.},
}

Details

Zusammenfassung: Let $N$ be a zero-symmetric near-ring with identity, and let $\Gamma$ be a faithful tame $N$-group. We characterize those ideals of $\Gamma$ that are the range of some idempotent element of $N$. Using these idempotents, we show that the polynomials on the direct product of the finite $\Omega$-groups $V_1, V_2, \ldots, V_n$ can be studied componentwise if and only if $\prod_{i=1}^n V_i$ has no skew congruences.

Erscheinungsjahr: 2001
Anzahl Seiten: 10
ISBN: 0013-0915
Reichweite: International
Notiz zum Zitat: Erhard Aichinger, On near-ring idempotents and polynomial functions on direct products of Omega-groups, Proceedings of the Edinburgh Mathematical Society (2001) 44, 379 - 388.

Beteiligte

AutorInnen / HerausgeberInnen: Assoz.Univprof. DI Dr. Erhard Aichinger

Forschungseinheiten der JKU:

Wissenschaftszweige: 101 Mathematik | 101001 Algebra | 101005 Computeralgebra | 101013 Mathematische Logik | 102031 Theoretische Informatik

Zurück Zurück

Kontakt

Schließen
AbsenderIn
  1. Anrede
Mitteilung
  1. Betreff *


Sicherheitscode:
Bitte überprüfen Sie den Sicherheitscode!