Seitenbereiche:



Zusatzinformationen:

FUN-Veranstaltungen

FoFö-Stammtisch, 23. November 2017, 14 Uhr siehe Info-Veranstaltungen

Kontakt

Abteilung Forschungsunterstützung (FUN):
forschen@jku.at


Positionsanzeige:

Inhalt:

Forschungseinheiten

Vortrag auf einer Tagung (nicht referiert)

Types of polynomial completeness for expanded groups

Details

Zusammenfassung: From results of Maurer, Rhodes, and Fr\"ohlich, we know that every function on a finite simple non-abelian group is a polynomial function; these groups are called \emph{polynomially complete}. Later, it was studied when every congruence preserving function on an algebra is a polynomial function; such algebras were called \emph{affine complete}. In 2001, P.\ Idziak and K.\ S\l omczy\'nska introduced the concept of \emph{polynomial richness}. In general, it seems hard to characterize when a single algebra is affine complete or polynomially rich. Characterizations of affine complete algebras have been given for abelian groups (N\"obauer, Kaarli) and for finite algebras with a Mal'cev polynomial that have a distributive congruence lattice (Hagemann, Herrmann, Kaarli). It is not known if there is an algorithm that decides whether a given finite algebra (of finite type, with given operation tables for all operations) is affine complete. We will investigate finite modular lattices that satisfy a condition that is more general than distributivity. Based on work by Idziak and S\l omczy{\'n}ska, we can characterize affine complete and polynomially rich algebras among those finite algebras that have a group operation among their binary polynomial functions, and whose congruence lattice satisfies this condition on the congruence lattice. This is joint work with Neboj\v{s}a Mudrinski (Novi Sad).

Tagungstitel: 71st Workshop on General Algebra (AAA71) together with 21st Conference for Young Algebraists (CYA21)
Vortragsdatum: 11.02.2006
Land: Polen
Ort: Mathematical Research and Conference Center of the Polish Academy of Sciences Bedlewo

Beteiligte

ReferentInnen: Assoz.Univprof. DI Dr. Erhard Aichinger

Forschungseinheiten der JKU:

Wissenschaftszweige: 101 Mathematik | 101001 Algebra | 101005 Computeralgebra | 101013 Mathematische Logik | 102031 Theoretische Informatik

Zurück Zurück

Kontakt

Schließen
AbsenderIn
  1. Anrede
Mitteilung
  1. Betreff *


Sicherheitscode:
Bitte überprüfen Sie den Sicherheitscode!