Seitenbereiche:



Zusatzinformationen:

FUN-Veranstaltungen

FoFö-Stammtisch, 23. November 2017, 14 Uhr siehe Info-Veranstaltungen

Kontakt

Abteilung Forschungsunterstützung (FUN):
forschen@jku.at


Positionsanzeige:

Inhalt:

Forschungseinheiten

Aufsatz / Paper in sonstiger referierter Fachzeitschrift

On the maximal ideals of non-zero-symmetric near-rings and of composition algebras of polynomial functions on {$\Omega$}-groups.

Aichinger E.: On the maximal ideals of non-zero-symmetric near-rings and of composition algebras of polynomial functions on {$\Omega$}-groups., 2001.

BibTeX

@ARTICLE{
title = {On the maximal ideals of non-zero-symmetric near-rings and of composition algebras of polynomial functions on {$\Omega$}-groups.},
type = {Aufsatz / Paper in sonstiger referierter Fachzeitschrift},
author = {Aichinger, Erhard},
language = {EN},
abstract = {Let $G$ be a finite group, and let $\algop{P(G)}{+,\circ}$ be the near-ring of all polynomial functions on $G$. We describe the maximal ideals of this near-ring. Our approach also allows to determine the maximal congruences of the composition algebra of polynomial functions on a finite $\Omega$-group. We apply these results to find the maximal ideals of a finite near-ring with $1$ that is faithful on its constants. In some occasions, the intersection of the maximal ideals yields an ideal that has properties that are similar to nilpotency.},
issn = {1607-3606},
year = {2001},
note = {Zitatsnotiz: Erhard Aichinger, On the maximal ideals of non-zero-symmetric near-rings and of composition algebras of polynomial functions on {$\Omega$}-groups, Quaestiones Mathematicae 24 (2001), pp. 453-480.},
url = {http://science.up.ac.za/sams/journal.html},
}

Details

Zusammenfassung: Let $G$ be a finite group, and let $\algop{P(G)}{+,\circ}$ be the near-ring of all polynomial functions on $G$. We describe the maximal ideals of this near-ring. Our approach also allows to determine the maximal congruences of the composition algebra of polynomial functions on a finite $\Omega$-group. We apply these results to find the maximal ideals of a finite near-ring with $1$ that is faithful on its constants. In some occasions, the intersection of the maximal ideals yields an ideal that has properties that are similar to nilpotency.

Erscheinungsjahr: 2001
Web: http://science.up.ac.za/sams/journal.html (Quaestiones Mathematicae)
ISSN: 1607-3606
Reichweite: International
Notiz zum Zitat: Erhard Aichinger, On the maximal ideals of non-zero-symmetric near-rings and of composition algebras of polynomial functions on {$\Omega$}-groups, Quaestiones Mathematicae 24 (2001), pp. 453-480.

Beteiligte

AutorInnen / HerausgeberInnen: Assoz.Univprof. DI Dr. Erhard Aichinger

Forschungseinheiten der JKU:

Wissenschaftszweige: 101 Mathematik | 101001 Algebra | 101005 Computeralgebra | 101013 Mathematische Logik | 102031 Theoretische Informatik

Zurück Zurück