Seitenbereiche:



Zusatzinformationen:

FUN-Veranstaltungen

FoFö-Stammtisch, 23. November 2017, 14 Uhr siehe Info-Veranstaltungen

Kontakt

Abteilung Forschungsunterstützung (FUN):
forschen@jku.at


Positionsanzeige:

Inhalt:

Forschungseinheiten

Aufsatz / Paper in sonstiger referierter Fachzeitschrift

The polynomial functions on certain semidirect products of groups

Aichinger E.: The polynomial functions on certain semidirect products of groups, 2002.

BibTeX

@ARTICLE{
title = {The polynomial functions on certain semidirect products of groups},
type = {Aufsatz / Paper in sonstiger referierter Fachzeitschrift},
author = {Aichinger, Erhard},
language = {EN},
abstract = {We compute the unary polynomial functions on groups that arise as semidirect products of two groups $A, B$ with the property that every element of $B$ operates on $A$ by conjugation either trivially or as a fixed-point-free automorphism; in many cases, we obtain the number of polynomial functions on these groups.},
isbn = {0001-6969},
year = {2002},
note = {Zitatsnotiz: Erhard Aichinger. The polynomial functions on certain semidirect products of groups. Acta Sci. Math. (Szeged) 68 (2002), 63-81.},
url = {http://www.math.u-szeged.hu/acta/},
}

Details

Zusammenfassung: We compute the unary polynomial functions on groups that arise as semidirect products of two groups $A, B$ with the property that every element of $B$ operates on $A$ by conjugation either trivially or as a fixed-point-free automorphism; in many cases, we obtain the number of polynomial functions on these groups.

Erscheinungsjahr: 2002
Anzahl Seiten: 19
Web: http://www.math.u-szeged.hu/acta/ (Acta Scientiarum Mathematicarum (Szeged))
ISBN: 0001-6969
Notiz zum Zitat: Erhard Aichinger. The polynomial functions on certain semidirect products of groups. Acta Sci. Math. (Szeged) 68 (2002), 63-81.

Beteiligte

AutorInnen / HerausgeberInnen: Assoz.Univprof. DI Dr. Erhard Aichinger

Forschungseinheiten der JKU:

Wissenschaftszweige: 101 Mathematik | 101001 Algebra | 101005 Computeralgebra | 101013 Mathematische Logik | 102031 Theoretische Informatik

Zurück Zurück