Seitenbereiche:



Zusatzinformationen:

FUN-Veranstaltungen

FoFö-Stammtisch, 23. November 2017, 14 Uhr siehe Info-Veranstaltungen

Kontakt

Abteilung Forschungsunterstützung (FUN):
forschen@jku.at


Positionsanzeige:

Inhalt:

Forschungseinheiten

Aufsatz / Paper in SCI-Expanded-Zeitschrift

On function compositions that are polynomials

Aichinger E.: On function compositions that are polynomials, in: Journal of Commutative Algebra, Volume 7, Number 3, Page(s) 303-315, 2015.

BibTeX

@ARTICLE{
title = {On function compositions that are polynomials},
type = {Aufsatz / Paper in SCI-Expanded-Zeitschrift},
author = {Aichinger, Erhard},
language = {EN},
abstract = {For a polynomial map $f : k^n \to k^m$ ($k$ a field), we investigate those polynomials $g \in k[t_1,\ldots, t_n]$ that can be written as a composition $g = h \circ f$, where $h: k^m \to k$ is an arbitrary function. In the case that $k$ algebraically closed of characteristic $0$ and $f$ is surjective, we will show that $g = h \circ f$ implies that $h$ is a polynomial.},
pages = {303-315},
journal = {Journal of Commutative Algebra},
volume = {7},
number = {3},
issn = {1939-0807},
year = {2015},
url = {https://rmmc.asu.edu/jca/jca.html},
}

Details

Zusammenfassung: For a polynomial map $f : k^n \to k^m$ ($k$ a field), we investigate those polynomials $g \in k[t_1,\ldots, t_n]$ that can be written as a composition $g = h \circ f$, where $h: k^m \to k$ is an arbitrary function. In the case that $k$ algebraically closed of characteristic $0$ and $f$ is surjective, we will show that $g = h \circ f$ implies that $h$ is a polynomial.

Journal: Journal of Commutative Algebra
Volume: 7
Nummer: 3
Erscheinungsjahr: 2015
Seitenreferenz: 303-315
Anzahl Seiten: 13
Web: https://rmmc.asu.edu/jca/jca.html (Journal of Commutative Algebra)
DOI: http://dx.doi.org/10.1216/JCA-2015-7-3-303
ISSN: 1939-0807
Reichweite: International

Beteiligte

AutorInnen / HerausgeberInnen: Assoz.Univprof. DI Dr. Erhard Aichinger

Forschungseinheiten der JKU:

Wissenschaftszweige: 101 Mathematik | 101001 Algebra | 101005 Computeralgebra | 101013 Mathematische Logik | 102031 Theoretische Informatik

Zurück Zurück