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Abstract

We present an angular superresolution method for light fields captured with a

sparse camera array. Our method uses local dictionaries extracted from a sam-

pling mask for upsampling a sparse light field to a dense light field by applying

compressed sensing reconstruction. We derive optimal sampling masks by min-

imizing the coherence for representative global dictionaries. The desired output

perspectives and the number of available cameras can be arbitrarily specified.

We show that our method yields qualitative improvements compared to previous

techniques.

Keywords: light fields, sampling, view interpolation, superresolution,

compressed sensing

1. Introduction and Contributions

Compared to standard digital photography, light fields offer various new

options, such as refocussing, perspective changes, and 3D filtering as a postpro-

cess. However, capturing them at an adequate resolution remains challenging.

Popular approaches typically multiplex the 4D information onto a single 2D5

sensor, which results either in low spatial resolution, low angular resolution,

or both. Multiple sensors (e.g., a camera array) can be used to overcome the

aforementioned issue. However, achieving an adequate resolution in the angular
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domain requires a vast number of cameras, resulting in high construction costs

and complexity.10

In this paper, we present an angular superresolution approach for light fields

captured with sparse camera arrays. We apply compressed sensing theory for

reconstruction and find optimal sampling masks for a desired number of cameras

and sampling grid resolution. In contrast to related work, we avoid the need for

depth reconstruction, which often fails for non-Lambertian scenes. Compressed15

sensing has previously been applied to light fields (e.g., in [1, 2]). One of our

contributions is the use of online learned local dictionaries extracted directly

from the scene sampled with an optimized mask instead of using global dic-

tionaries that are learned offline from a set of representative pre-recorded light

fields. Therefore, our method yields superior reconstruction results compared to20

related techniques. A second contribution is that, in contrast to previous work

(including our own [3]), the number of samples is not constrained to the sampling

pattern. Thus, our new approach allows to determine sampling masks for an

arbitrary number of cameras. We compute coherence values for representative

global dictionaries that provide a formal basis for estimating the reconstruction25

quality of a given sampling pattern. We find sampling masks by minimizing

the coherence. Corresponding sampling masks are optimal with respect to the

representative light fields used for training the global dictionary. Our method

can be applied in situations where a high angular light-field resolution is desired,

but camera arrays can only be constructed with a limited number of cameras30

(e.g., due to bandwidth limitations or high hardware costs). Our method is not

suitable for light-field camera designs that do not support angular subsampling

(e.g., single sensor microlens-array-based cameras).

The remainder of the paper is organized as follows: After discussing related

and previous work in Section 2, we introduce mathematical notations and revisit35

compressive light-field reconstruction in Section 3. Section 4 describes the pro-

posed coherence-based quality metric, the sampling pattern optimization with

offline learned global dictionaries, and the reconstruction with online learned

local dictionaries. While Section 5 focusses on parameter choices and imple-
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mentation details, Section 6 is devoted to experimental results and evaluation.40

We conclude this article in Section 7 with a summary of limitations and future

work.

2. Related Work

Compact light-field cameras often multiplex spatial and angular information

on a single 2D sensor and thus suffer from either low spatial resolution, low45

angular resolution, or both. As a consequence spatial super-resolution methods

for light fields have been proposed [4, 5, 6]. For camera arrays with multiple

image sensors, spatial resolution is usually not an issue. However, high an-

gular resolution requires a vast number of cameras, incurring high costs and

complexity.50

Angular super-resolution methods reduce the number of required cameras

by reconstructing missing camera perspectives. Upsampling is applied to avoid

undersampling artefacts and to enable smooth view transitions. For Lambertian

scenes, depth reconstruction and subsequent view interpolation can be applied

[7, 8, 9, 10, 11, 12, 13].55

Depth reconstruction works well for adequately textured isotropic content,

but can fail for more realistic scenes with non-Lambertian, anisotropic, or com-

pletely uniform objects. Non-Lambertian content cannot be described suffi-

ciently in 3D but requires additional information, as provided in 4D light-field

recordings. Thus, we compare our approach to upsampling methods that do60

not rely on explicit depth reconstruction.

In [14], an approach called linear view synthesis was presented that can

calculate novel views from a focal stack without depth information. However,

it is limited mainly to Lambertian scenes, since a focal stack covers only a

3D subset of a full 4D light field. The same restriction applies to the method65

presented in [15], where a focal stack is computed for each new perspective, and

an all-in-focus image is then extracted from the focal stack.

The approach described in [16] uses a shearlet transform to reconstruct sub-
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sampled epipolar-plane images of a light field, which does not require explicit

depth reconstruction. However, reconstruction is still based on a Lambertian70

scene model; the authors discussed possible extensions to non-Lambertian scenes

only as part of future work. Furthermore, their sampling mask is regular, while

we optimize our mask and allow arbitrary irregular patterns.

In [17], a method specifically targeted at non-Lambertian scenes was intro-

duced which uses sparsity in the continuous Fourier domain to reconstruct light75

fields from a small number of 1D viewpoint trajectories in a camera array. Al-

though the sampling mask is sparse, the method requires very specific sampling

patterns with a fixed number of cameras for capturing. In contrast, we describe

how to find an optimal sampling pattern for an arbitrary number of cameras and

also show that we achieve higher reconstruction quality with the same number80

of cameras.

Recently, learning-based methods for light-field superresolution have been

presented [18, 19, 13]. The approach introduced in [18], for example, trains

convolutional neural networks to upsample a light field in the spatial and angular

domains. However, it requires a relatively dense and regularly sampled input,85

while our method supports sparse and irregular samples.

Methods in [19, 13] use sparse input samples but rely on depth layers or

depth reconstruction. In [13] two convolutional neural networks are applied—

one for disparity estimation, and one for view interpolation. Therefore, these

methods are limited to Lambertian scenes. Furthermore, in comparison to our90

approach, these learning-based techniques do not optimize sampling masks, but

rely on manually defined sampling patterns.

The aforementioned methods can upsample sparse light fields but require

regular sampling masks. Compressed sensing approaches use irregular sampling

masks to encode additional information in a low-resolution recording. The meth-95

ods presented in [1, 20, 21, 22, 23, 24, 25, 26] place sampling masks in the optical

path of standard cameras or compact microlens-based plenoptic cameras. Re-

constructions of full light fields from the recordings are computed with sparse

bases (e.g., DCT, trained global dictionaries, or Gaussian mixture models) and
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sparsity-aware optimization methods. We also use compressed sensing theory100

for reconstruction, but optimize the binary angular sampling pattern of a camera

array instead of using (often continuous) optical sampling masks (which affect

the spatial and angular domains). Compressed sensing in the spatial domain

for camera arrays was presented in [27]. Lambertian Gaussian mixture models,

as used in [10, 22], ignore anisotropic effects and transparencies. Corresponding105

methods require disparity estimations as an aditional preprocessing step. While

it might be possible to reformulate the approach proposed in [22] to address

the problem of choosing optimal camera sample locations, it is still limited to

Lambertian scenes.

The methods in [2] and [3] are the closest to our approach. Similarly, these110

techniques upsample light fields captured with a sparse camera array while

avoiding depth information. Like the approach in [2], our method uses com-

pressed sensing techniques for reconstruction. However, we extended this idea

by using local dictionaries extracted from a sub-sampled light field for recon-

struction. Furthermore, we present methods for computing optimal sampling115

masks for an arbitrary number of cameras and sampling grid sizes.

Our previous method [3] already presented the idea of using higher-resolution

guidance areas to support up-sampling. In this article, we improved the re-

construction quality by using compressed sensing. Additionally, we present a

method for computing optimal sampling configurations based on coherence val-120

ues in a global dictionary and for an arbitrary number of cameras. In [3] we

applied (empirically found) rules for estimating sampling masks that supported

only specific numbers of cameras.

3. Mathematical Notation and Sparse Light-Field Reconstruction

In this section, we introduce the mathematical notations that we will use125

throughout this article and revisit sparse light-field reconstruction with global

dictionaries (e.g., [1]).

We consider light fields captured with camera arrays and described by a regu-
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lar two-plane parametrization, as discussed in [28]. Thus, rays are parametrized

by their intersections with two parallel planes: the camera plane UV (repre-130

senting the angular domain), where the cameras are located, and the common

image plane ST (representing the spatial domain), placed at a fixed distance

from UV towards the objects to be captured. The indices u, v describe different

camera positions on UV , and s, t address pixels in the captured perspective

images Iu,v. We assume the light field to be regularly discretized and describe135

the ray intensities with the 4D matrix L (of size S×T×U×V ) or its vectorized

1D counterpart l = vec(L) = [i0,0, i0,1, ..., iU,V ]
⊤), which contains a sequence of

vectorized 1D versions of the captured perspectives (iu,v = vec(Iu,v)).

The goal of upsampling is to reconstruct a full light field l from its sub-

sampled counterpart l′ = Φl, which only contains a subsection of all captured140

perspective images Iu,v described by the sampling matrix Φ. Since the size of l′

is much lower than that of l, this is an ill-posed, underdetermined problem. Us-

ing an approach similar to that in [1], we solve this by exploiting the compressed

sensing idea. Thus, we assume that l is compressible and can be described as

l = Dα with a sparsifying dictionary D and a sparse coefficient vector α. The145

additional sparsity constraint for α allows a robust solution to be found for α,

and thus also for l, by solving the following problem:

minimize
α

‖l′ −ΦDα‖
2

2 ,

subject to ‖α‖1 ≤ τ,

(1)

where τ is some threshold. This is known as the LASSO optimization problem

[29]: the underdetermined system is solved by enforcing the ℓ1 norm of the

coefficient vector to be small, which leads to a sparse solution for α. In practice,150

we solve the following Lagrangian formulation of the above problem using the

ADMM method described in [30]:

minimize
α

0.5 ‖l′ −ΦDα‖
2

2 + λ ‖α‖1 . (2)

Scalability for high resolutions is achieved by reconstructing the light field
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patchwise. In practice, l contains only light-field patches of size (Sp×Tp×Up×Vp),

which allows light fields with arbitrary resolutions to be processed.155

Methods that find optimal global dictionaries D for robust light-field recon-

struction have been presented, for example, in [1, 2]. In these approaches, the

dictionary is learned from a representative selection of light-field patches, which

results in a single global dictionary that is suitable for reconstructing light fields

similar to those used for learning.160

In Section 4 we extend this idea by using a local dictionary extracted from the

sub-sampled light field of the recorded scene. Such local dictionaries have proven

to be superior to global ones, for example, in the case of image superresolution as

described in [31], and also lead to better reconstruction quality in our approach.

4. Global Dictionary Driven Sampling and Upsampling with Local165

Dictionaries

Our approach can be outlined in four consecutive steps: (i) finding optimal

local sampling masks for computable camera array tile sizes based on a repre-

sentative global dictionary, (ii) determining an ideal global sampling mask from

the determined local tiles, (iii) recording the sparsely sampled light field with170

the global sampling mask, and (iv) reconstructing missing perspectives using a

local dictionary being recored with the global sampling mask.

Let’s assume the example for which we desire a light field with a sampling

grid resolution of 15×15 perspectives being recorded with only 64 cameras (cf.

Figure 1). Finding the optimal sampling mask in a brute force search by placing175

64 samples on a 15×15 grid results in ≈ 1057 combinatoric possibilities that are

infeasible to consider. Therefore, we must reduce the search space by splitting

the sampling grid into Q tiles of size Up×Vp. In our example, we split the grid

into 9 tiles of size 5×5.

Each tile can theoretically contain 1 to 25 cameras, and the total number180

of cameras in all tiles must match 64. Several possibilities exist to distribute

cameras within a tile (e.g., 53,120 possibilities to place 5 cameras). To solve
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Sampling Mask

5 5 5

5254

5 5 5

Cameras per TileSplit into Tiles

Figure 1: Example: Finding the sampling mask for a 15x15 light field captured with only 64

cameras. We first split the target sampling grid into 9 tiles and enforce a fully sampled tile

(guidance area) in the center of the mask to record the local dictionary needed for upsamplig

(indicated by the blue rectangle). All remaining tiles are optimized locally such that the total

number of cameras used is 64.

this problem, we search for the best pattern for each number of cameras (i.e.,

1 to 25) within tile resolution using a global dictionary computed from a set

of representative light fields. We explain how to achieve this in Section 4.1.185

Tile sampling results for common light-field patch sizes (spatial resolution x

tile/directional resolution) are shown in Figure 2.

For capturing the local dictionary that is required for our upsampling, we

enforce the center tile to be fully sampled and refer to this tile as guidance

area. The remaining tiles are selected from the set of best tile patterns while190

optimizing a global quality metric described in more detail in Section 4.2.

A light field recorded with the resulting global sampling mask is upsampled

to the full grid resolution by applying sparse reconstruction techniques with the

local dictionary extracted from recording the guidance area. This is explained

in more detail in Section 4.3.195

4.1. Optimal Tile Sampling

An important factor for reconstruction quality is the incoherence of the sam-

pling matrix Φ with respect to the dictionary D, as stated, for example, in [1].

Random sampling matrices have proven to be a good choice in this regard; how-

ever, recent advances in the field of compressed sensing have shown that these200

sampling matrices can be further optimized. The restricted isometry property
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(RIP) is typically used to examine whether robust reconstruction of a signal

from limited measurements is possible. However, as stated in [2], it does not

perform well for camera arrays. Furthermore, RIP is not directly tractable.

Hence, sampling matrix optimization is achieved by minimizing coherence mea-205

surements evaluated for the sub-sampled dictionary A = ΦD. They relate well

to the resulting reconstruction quality and are easier to compute.

Note that in our case, Φ represents the sampling matrix for one tile. Al-

though we use a local dictionary for reconstruction, we apply a global dictionary,

computed as in [1] and explained in Section 3, for finding optimal tile samplings.210

For coherence computations, the sampling matrix Φ and the dictionary D have

to be known before capturing.

Similarly to [32], we combine two different coherence formulations by a

weighted sum to increase the prediction accuracy of the reconstruction qual-

ity:

µ = µavg + βµdict. (3)

First, we use the average mutual coherence formulation (µavg), as described

in [33]:

µavg =

∥

∥

∥
ÃT Ã− I

∥

∥

∥

2

2

K(K − 1)
, (4)

where Ã contains normalized columns of A, and K is the number of atoms215

(i.e., columns) in the dictionary. The average mutual coherence has been used

successfully in the context of light fields (e.g., [1]). Values are small when sub-

sampled atoms in the dictionary are different (orthogonal in the best case),

which reduces ambiguities during reconstruction.

The second coherence value (µdict) in Equation (3) is the coherence difference220

between the original dictionary and the sub-sampled dictionary [32, 34]:

µdict =

∥

∥

∥
ÃT Ã− D̃T D̃

∥

∥

∥

2

2

K(K − 1)
. (5)
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This formulation prefers sensing matrices which result in a sub-sampled dic-

tionaryA with properties similar to those ofD. Simulations in [32] showed good

performance when using this coherence metric in combination with real-world

images. Further details on choosing the weight β for Equation (3) are discussed225

in Section 5.

To further improve the correlation of the mean coherence value with the

mean reconstruction quality, we take the number of available cameras Nq per

tile into account. Thus, we extend Equation (3) as follows:

µ̃q = µq

(

1−
Nq

UpVp

)

, (6)

where Up and Vp are the tile sizes and angular patch sizes. This improves

the comparability of the coherence values for sampling matrices with different

numbers of available cameras, as shown in Section 5.

With the coherence value µ̃q, we can now estimate the reconstruction quality230

for a given sampling pattern in a tile. Low coherence values indicate a high

reconstruction quality.

We determine the best sampling pattern of one tile for each possible number

of cameras j ∈ {1, 2, ..., UpVp}. Thus, we use µ̃q (Equation (6)) as a coherence

metric and then search for the best—with respect to our representative global235

dictionary—sampling masks. The minimal coherence for all possible numbers of

cameras (1 to UpVp) is stored in a vector x = [x1, x2, . . . , xUpVp
], where xj is the

coherence for the best tile pattern with j cameras. The best tile patterns for the

tile sizes used in our experiments can be seen in Figure 2, where we computed

coherence values with Equation (6) for all possible patterns and picked those240

with the smallest coherence.

Best tile patterns for patch sizes (i.e., spatial resolution × tile/directional

resolution) commonly used in light-field literature are shown in Figure 2.

4.2. Ideal Tiling

When placing tiles in the global sampling grid, the distance to the guidance

area influences the reconstruction quality. To take this distance dq into account,
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7×7×3×3 8×8×4×4 9×9×5×5

1 2 3 1 2 3 4 1 2 3 4 5 6 7

0.371 0.213 0.141 0.425 0.225 0.142 0.112 0.454 0.210 0.129 0.099 0.089 0.083 0.076

4 5 6 5 6 7 8 8 9 10 11 12 13 14

0.107 0.083 0.064 0.104 0.090 0.081 0.072 0.072 0.066 0.062 0.057 0.053 0.049 0.045

7 8 9 9 10 11 12 15 16 17 18 19 20 21

0.042 0.021 0.000 0.062 0.053 0.044 0.035 0.041 0.037 0.033 0.029 0.024 0.020 0.016

13 14 15 16 22 23 24 25

0.026 0.017 0.009 0.000 0.012 0.008 0.004 0.000

Figure 2: Best tile patterns for common light-field patch sizes 9×9×5×5, 8×8×4×4, and 7×7×3×3.

The numbers below each pattern indicate the number of cameras Nq and the coherence µ̃q ,

respectively.

we extend Equation (6) by a weight function w(dq):

µ′

q = µ̃q w(dq). (7)

We approximate the weight function with a first-degree polynomial curve as245

discussed in Section 5.1.

As explained earlier, we reconstruct the light field patchwise in the angular

and spatial domains. Thus, we do not have a single sampling matrix Φ, but

multiple ones: one Φq for each distinct tile of the angular sampling grid, as

shown in Figure 3. To predict the reconstruction quality over the entire sampling250

grid, we compute a coherence value µ′
q for each Φq and then average these

to obtain the mean coherence value µ̄′ correlating to the mean reconstruction

quality. Note again that the guidance area (Mg) must be fully sampled to allow

extraction of a local dictionary.

Given an angular sampling grid resolution U×V of a light field and a number255

of available cameras (N), we seek to find an optimal sampling mask M such

that µ̄′ is minimized and thus a high reconstruction quality can be achieved. As

already outlined above, the sampling mask M is split into Q tiles, where each is

of size Up×Vp. We have already determined the best sampling patterns of one
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tile with corresponding coherence values for each possible number of cameras260

x in Section 4.1. Based on x, we must find the number of cameras Nq to be

used for each tile (such that the sum equals N and µ̄′ is minimized). We have

to consider the distance weights w(dq) of each tile in addition to the minimal

coherence values stored in x. Thus, we must find a solution to the following

problem:265

minimize
N1,N2,...,NQ

1

Q

Q
∑

q=1

xNq
w(dq),

subject to

Q
∑

q=1

Nq = N,

Ng = UpVp,

Nq ∈ {1, . . . , UpVp},

(8)

where xNq
is the minimal coherence µ̃q for the number of cameras Nq, and

g is the index of the fully sampled guidance area (in the grid center).

Equation (8) can be reformulated and solved as a variant of the knapsack

problem [35] by mixed-integer linear programming. The full sampling mask

M is then constructed by placing the best tile sampling patterns (Secion 4.1)270

corresponding to the optimal number of cameras Nq determined for each tile

into M .

4.3. Light-Field Reconstruction with Sparsity Optimization

As stated earlier, we can apply a local dictionary for upsampling because our

sampling grid contains a fully sampled tile (guidance area). The guidance area275

records several fully sampled light-field patches which can be used directly as

atoms (i.e., columns) of our local dictionary matrix D. The remaining (Q− 1)

tiles have different sampling matrices Φq|q ∈ {1, 2, ..., Q}, q /∈ g. The relation

between the angular sampling mask M and one distinct sampling matrix Φq is

shown in Figure 3. Since M is binary, we always sample the full spatial domain280

and only sub-sample the angular domain by skipping cameras in the array.

12



Sampling Mask M Tile Mq Sampling Matrix Φq

Figure 3: Relation between the angular sampling mask M (left), one tile Mq (center), and the

corresponding sampling matrix Φq (right). The guidance area is indicated by a blue rectangle.

Given the sampling matrices and the local dictionary, the reconstruction is

performed by Equation (2). To reduce complexity and for performance reasons,

tiles do not overlap in the angular domain in our case.

5. Implementation and Parameterization285

For our experiments, we used light fields from the Stanford repository [36]

that are captured with a camera gantry, and synthetically rendered light fields

from [37]. Eight of the Stanford light fields served as training set for the global

dictionary (Figure 4), while the remaining ones were used for evaluation (Figures

7, 8, 9 and 10).290

We applied patch sizes (Sp×Tp×Up×Vp = 9×9×5×5, 8×8×4×4, and 7×7×3×3)

that had proved successful in previous work such as [1, 3] and permit reasonable

reconstruction times.

For each patch size we learned a global dictionary by randomly selecting

5,000,000 greyscale patches from the training light fields. Similarly to [1] we295

picked a subset of 100,000 patches with high variance from the 5,000,000 random

patches. These subset patches were used to run 1,000 KSVD iterations for

training a 2× overcomplete dictionary. The resulting global dictionaries were

used to calculate the coherence metrics for sampling matrices.
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light fields spatial resolution disparity range

tr
a
in
in
g
[3
6
]

Bracelet 320×512 -2.0 – 0.5

Chess 400×700 -2.0 – 0.5

Eucalyptus 768×640 -1.0 – 0.5

Jellybeans 256×512 -0.5 – 2.5

Bulldozer 576×768 -4.5 – 1.0

Truck 480×640 -1.0 – 0.5

Bunny 512×512 -1.0 – 2.0

Treasure 640×768 -3.0 – 1.0

te
st

[3
6
]

Amethyst 512×384 -1.0 – 1.0

Lego 512×512 -2.0 – 2.0

Tarot 512×512 -2.0 – 1.0

te
st

[3
7
]

Cave 476×476 -3.5 – -1.0

Alley 400×512 -2.5 – -0.5

Table 1: Eight light fields from the Stanford repository [36] were used as training set.

Three light fields from the same repository (recorded with the same camera gantry) and two

additional (synthetically rendered) light fields from [37] were used for evaluation. The table

shows the spatial resolution and approximate disparity ranges. The angular resolution is

17×17.

Bracelet Chess JellybeansBulldozer

Treasure Bunny EucalyptusTruck

Figure 4: Training light fields from the Stanford repository [36]. For details on resolutions

and disparities see Table 1.
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5.1. Coherence Parameters and Distance Weights300

We determine the optimal β in Equation 3 and the best w in Equation 7

experimentally. Long reconstruction times however make experimental analyses

on full training light fields infeasible. Hence, we used 96 representative light-

field patches (12 per training light field) for finding optimal parameters. Repre-

sentative patches are patches selected for their high reconstruction complexity.305

To determine the reconstruction complexity of patches, we reconstructed 40,000

random patches (using randomly placed guidance areas) with different sampling

masks using 3, 4 and 9 cameras, as shown in Figure 5. Note that these sampling

masks contain only a single non-guidance tile. From preliminary experiments

we know that a high number of cameras per mask and uniform camera place-310

ment improve reconstruction quality. In patches that are easy to reconstruct

(e.g., uniform patches), the reconstruction quality is influenced only slightly by

the sampling mask. Thus, we chose patches for which the reconstruction error

(RMSE) differed most when using the 3-camera and 9-camera masks. Further-

more we ensured that the reconstruction error increased with decreasing number315

of cameras. The selected representative patches for our experiments with patch

size 9×9×5×5 are shown in Figure 6 as examples. Note that for the experiments

with smaller patch sizes the representative patches were cropped.

N=9 N=4 N=3

Figure 5: Different sampling masks for determining patches with high reconstruction com-

plexity. Reconstruction quality for representative patches should decrease if the number of

cameras per sampling mask is reduced.

For determining the optimal β in Equation 3 we sample the representative

light-field patches with random tile patterns and perform reconstructions to320

the full patch sizes (i.e., 9×9×5×5, 8×8×4×4, and 7×7×3×3) by Equation 2. Fur-

thermore, we compute µavg and µdict (Equations 4 and 5) for all random tile
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Figure 6: Representative light-field patches of example patch size 9×9×5×5.

patterns. Then we search for an optimal β such that the reconstruction error

(RMSE) and µ̃q of random tile patterns (Equation 6) over the exemplary patch

sizes correlate the most. We use the Pearson correlation [38] as a metric for325

linear dependence and MATLAB’s simplex search method (fminsearch) [39] to

find the optimal β = 7.7.

We approximate the distance function (w in Equation 7) with a first-degree

polynomial function. Therefore, we use the best sampling pattern of one tile

for each possible number of cameras (x in Section 4.1) and perform reconstruc-330

tions of the representative patches. For this experiment, we are interested in

the impact of the angular distance between the guidance area and the patch

to reconstruct. Thus, we randomly alter the angular patch and guidance po-

sition when reconstructing representative patches with our exemplary patch

sizes. Again, we use the Pearson correlation value as a measure of correlation335

between RMSE and Equation 7. Using MATLAB’s simplex search method, we

determine w(dq) = 0.0042dq + 0.049. The corresponding correlations for the
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exemplary patch sizes 9×9×5×5, 8×8×4×4, and 7×7×3×3 are 0.932, 0.966 and 0.909,

respectively.

5.2. Patch Size and Step Width340

The sampling grid resolution (U×V ) is a multiple of the angular patch size in

our current implementation. If multiple patch sizes are possible, we optimize µ̄′

as described in Section 4.2 for each patch size and choose the sampling mask with

the smaller mean coherence. The validity of this choice is shown experimentally

in Table 2 for our test light fields, where we present the peak signal-to-noise345

ratio (PSNR) and corresponding coherence values for two different sampling grid

resolutions and two possible patch sizes. These experiments indicate that larger

patch sizes lead to better reconstruction results if enough cameras are available.

The coherence values are in agreement with the reconstruction quality. Thus for

our results in Section 6 we used the largest applicable patch size (i.e., 9×9×5×5).350

For reconstruction, we allow patches to overlap in spatial domain. The overlap

is defined by a spatial step width parameter that specifies the spatial distance

between adjacent patches (e.g., a step width of 9 for 9×9×5×5 means no overlap)

when reconstruction with Equation 2. If the step width is small more patches

overlap, thus increasing the reconstruction quality. However, as more patches355

are reconstructed the computation times increases. Results in Section 6 are

reconstructed with a step width of 2, which results in a good trade-off between

performance and reconstruction quality.

5.3. Implementation Details

We implemented our approach in Matlab and used GPU-optimizations to360

improve performance. In particular, we used a GPU version of the ADMM solver

described in [40, 41] for reconstruction with λ = 0.01, relative and absolute

tolerances set to 0.001 and 0.0001, and the number of iterations limited to

1000. Reconstruction time and quality depended on content, resolution and

parameters. As explained in Section 4.3, we reconstruct the light field patchwise365

and avoid overlapping patches in the angular domain to reduce complexity;
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however, we allow an overlap between the patches in the spatial domain to

increase reconstruction quality. The reconstructions of spatially overlapping

patches are averaged in our current implementation.

To further increase the locality of our dictionary used for reconstruction, we370

computed multiple different dictionaries Ds,t for different parts of the spatial

domain. Patches were always reconstructed with the closest local dictionary.

In detail, we extracted light-field patches in a sliding window fashion (spatial

step width 1) from a spatial 50x50 pixel region for one dictionary, which yielded

∼1700-2000 atoms in the dictionary (depending on the patch size). The regions375

overlapped with a spatial step width of 25 pixels. Finally, from each atom in

the dictionary its mean was subtracted, and a uniform atom was added to the

dictionary for compensation. The initial solution for the sparse coefficient vector

α was set to reflect the mean intensity of all available rays in the sub-sampled

light-field patch to speed up convergence.380

6. Results

For evaluation, we used eight light fields (Figure 1) to train the global dic-

tionary required for computing the sampling masks, and five test light fields for

comparing our results with results of related approaches (see Table 1). The fully

sampled light fields serve as ground truth, and we apply PSNR as a measure of385

reconstruction quality.

We compare our approach with the three most related methods that also do

not rely on depth reconstruction for upsampling: Marwah et al. 2013 [1] (we use

a uniform mask for sampling and a global dictionary for upsampling), Shi et al.

2014 [17] (uses an X-shaped mask for sampling and an optimization of sparsity390

in Fourier domain for upsampling), and our previous method [3] (uses a guidance

area and uniform border as a sampling mask, and nearest-neighbor search for

upsampling). The sampling grid resolution was 15×15=225 perspectives. In

contrast to our current approach, the sampling masks of all related methods

are constrained to specific numbers of cameras. Thus, for comparison, we chose395
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scenes Marwah et al. Shi et al. Schedl et al. Kalantari et al. Our Method

Amethyst 39.25 dB (64) - - - 43.31 dB (64)

Lego 30.25 dB (64) - - - 37.08 dB (64)

Lego 30.25 dB (64) - - - 34.90 dB (48)

Cave 27.96 dB (64) - - - 40.02 dB (64)

Alley 38.03 dB (64) - - - 45.28 dB (64)

Amethyst - 38.09 dB (72) - - 43.86 dB (72)

Tarot - 31.88 dB (72) - - 39.48 dB (72)

Amethyst - - 43.50 dB (69) - 43.66 dB (69)

Tarot - - 35.68 dB (69) - 39.47 dB (69)

Tarot - - 35.68 dB (69) - 36.99 dB (48)

Cave - - 31.55 dB (69) - 40.73 dB (69)

Alley - - 42.96 dB (69) - 45.83 dB (69)

Lego - - - 34.32 dB (64) 37.08 dB (64)

Cave - - - 32.45 dB (64) 40.02 dB (64)

Alley - - - 44.67 dB (64) 45.28 dB (64)

Table 3: Quantitative comparison of reconstruction quality (PSNRs) with related methods

[1], [17], [3] and [13] for a sampling grid size of 15×15. Visual examples are provided for the

highlighted cases in Figures 7, 8 and 9.

numbers of cameras that are applicable for the individual related methods.

Furthermore, we also compare against one exemplary state-of-the-art depth-

based reconstruction method: Kalantari et al. 2016 [13] (we chose a regular

sampling mask with tiles, trained the system with our eight training light fields,

and used the Amethyst and Tarot scenes as test set while training).400

Table 3 summarizes results and indicates that our current approach out-

performs all related methods. Either, our approach delivers a better quality

(higher PSNR) with the same number of cameras, or requires a lower number

of cameras for the same quality (similar PSNR). Furthermore, it is much more

flexible since it supports an arbitrary number of cameras for determining an405

optimal sampling mask.

Figures 7 and 8 present visual examples for the cases highlighted in Table 3,

where the training and test light fields are similar (i.e., from the same repository

[36], recorded with the same camera). Figure 9 showcases results, where the

light fields drastically differ from the training set (i.e., synthetic scene and only410
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Reference Marwah et al. 2013 Our Method

PSNR: 30.25dB PSNR: 37.08dB

Reference  Shi et al. 2014 Our Method

PSNR: 38.09dB PSNR: 43.86dB

Reference Schedl et al. 2015 Our Method

PSNR: 35.68dB PSNR: 39.47dB

SSIM: 0.940 SSIM: 0.987

SSIM: 0.888 SSIM: 0.989

SSIM: 0.987 SSIM: 0.995

Figure 7: Visual comparison of reconstruction quality (PSNRs and SSIMs) with related meth-

ods [1], [17], and [3] for example cases highlighted in Table 3. Note that SSIM is given for the

displayed perspective only while PSNR is computed for the entire light field. Blue rectangles

mark close-ups and green rectangles present EPI images. Red dots in the sampling mask

indicate the displayed view. Shown scenes are Lego, Amethyst, and Tarot.
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Reference Kalantari et al. 2016 Our Method

PSNR: 34.32dB PSNR: 37.08dBSSIM: 0.963 SSIM: 0.989

Figure 8: Visual comparison of reconstruction quality (PSNRs and SSIMs) with a state-of-

the-art depth-based reconstruction method [13] for the Lego scene. Artefacts are visible where

the depth reconstruction fails (i.e., uniform areas and occlusions). Note that SSIM is shown

for the displayed perspective while PSNR is computed for the entire light field.

negative disparities).

Computation times for a patch size of 9×9×5×5 and step with of 2 ranged in

our implementation from 5 hours (Amethyst) to 16 hours (Tarot) on a PC with

an i5-6400 CPU @ 2.70 Ghz, 24 GB RAM and a GeForce GTX 960 GPU with

4 GB RAM.415

7. Limitations and Future Work

We present an angular superresolution method for light fields captured with

a sparse camera array. It outperforms related techniques which do not rely on

depth estimation. Our main contributions are the use of a global dictionary

for determining optimal sampling mask that support an arbitrary number of420

cameras, and the use of local dictionaries and compressed sensing theory for

upsampling. Furthermore, we show that mutual coherence is a good indicator

for the sampling mask quality.

Our upsampling technique can be applied to any sampling mask containing

a guidance area. However, the reconstruction quality significantly drops when425

non-optimized sampling masks are used (i.e., random sampling patterns, as

shown in Figure 10).
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Reference Marwah et al. 2013 Our Method

PSNR: 38.03dB  PSNR: 45.28dB 

Reference Schedl et al. 2015 Our Method

PSNR: 31.55dB PSNR: 40.73dB

SSIM: 0.945 SSIM: 0.995

SSIM: 0.962 SSIM: 0.994

Figure 9: Visual comparison of reconstruction quality (PSNRs and SSIMs) with the related

methods [1] and [3]. The Cave and Alley scenes are synthetically rendered and their zero-

disparity focal plane is at infinity (i.e., parallel cameras), which is quite different when com-

pared to the light fields used for training the global dictionary. Therefore, [1] results in low

quality reconstructions (e.g., blurriness), while our local dictionary generates superior results.

Note that SSIM is given for the displayed perspective only while PSNR is computed for the

entire light field.
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Reference Random Sampling Our Method

PSNR: 33.38dB PSNR: 36.76dB
SSIM: 0.959 SSIM: 0.987

Figure 10: Upsampling quality strongly degrades when non-optimized sampling patterns are

used. Here we show reconstruction quality (PSNRs and SSIMs) when our upsampling tech-

nique is applied to a light field recorded with a random (i.e. non-optimized) and an optimized

sampling mask (both with 49 cameras). Note that SSIM is shown for the displayed perspective

while PSNR is computed for the entire light field. Reconstruction was performed with a step

width of 5.

Although our experiments indicate that computed sampling masks lead to

improved upsampling results even for light fields that differ much from those

used in the global dictionary, a comprehensive study is required that leads to430

general representative global dictionaries for various applications and light field

cameras. This will be part of future work.

Optimal sampling patterns for non-compressive reconstruction techniques

(e.g., learning-based methods such as[13]) are on our agenda for future work.

A limiting factor is the high computational cost of finding best tile sampling435

patterns (as explained in Section 4.1) for tile sizes that exceed 5×5 arising from

the sheer number of possible configurations. Approximate search techniques,

such as scatter search and genetic algorithms, must be applied in such situations.

Furthermore, we are planning to extend our sampling mask optimization to

support angular overlaps. First experiments indicate qualitative improvements440

while camera array sizes do not have to be a multiple of the patch size.

A main limitation is the long runtime of our implementation for upsampling.

Besides general performance optimizations, integrating the disaster area detec-

tion presented in [2] is a promising option. This technique can identify regions
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which benefit from a large spatial overlap during reconstruction, while other445

regions can be reconstructed faster without or with only minimal overlap.

While noise and vignetting is mainly an issue of single sensor light-field

cameras that apply microlens arrays, it might also be a limiting factor for camera

arrays with multiple sensors (e.g., in case of low-light scenes). The impact of

these artefacts on our method will be investigated in future work.450
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