Correct and Scalable Invariant Handling for Executing
Software Systems

Sebastian Wilms
Johannes Kepler University
Linz, Austria_
sebastian.wilms@jku.at

ABSTRACT

Errors in software systems often lead to invalid system states,
which are detectable through class invariants during the sys-
tems’ execution. The benefits of invariant checking are well
documented. Unfortunately, state-of-the-art approaches re-
quire extensive manual overhead for non-localized invariants
because multiple versions of an invariant may be needed
(re-writing problem). Moreover, invariant checking requires
that triggers are placed in the code which is unscalable if
done exhaustively or unreliable if optimized manually (trig-
ger placement problem). And, to complicate matters, trigger
placement and re-writing must be continuously adapted dur-
ing system evolution. This paper presents a novel approach
for invariant checking where engineers merely write a single
version of the invariant and the approach automatically, cor-
rectly, and scalably handles the invariant checking. Our ap-
proach instruments the code to observe execution events and
uses a constraint checker to analyze their consequences. The
incremental nature of our approach poses only a small, con-
stant execution overhead. A proof of concept tool for Java
exists through which our approach’s correctness and scala-
bility were validated on three case studies (up to 50KLOC
in size) and 46 invariants.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Program Verification— Class

invariants, Programming by contract; D.2.5 [Software En-
gineering]: Testing and Debugging— Monitors

General Terms

Verification

Keywords

Invariants, Design-by-contract

Alexander Nohrer
Johannes Kepler University
Linz, Austria
alexander.noehrer@jku.at

Alexander Egyed
Johannes Kepler University
Linz, Austria_
alexander.egyed@jku.at

1. INTRODUCTION

Invalid system behavior can be disastrous, especially if life
is at risk or the failure causes significant loss of any kind.
Design by contract [1] recognizes that incorrect behavior and
invalid states correlate directly in many cases and invariant
checking is an effective means for detecting invalid systems
states[2]. In object oriented languages, valid states are typi-
cally defined in form of class invariants. Consider an actual
industrial example of an invariant in a drone control sys-
tem whereby a drone’s position must always be within its
assigned airspace. Such an invariant is critical because a
drone’s failure to remain inside its assigned airspace implies
risk of life. The ability to detect such an invariant violation
quickly and correctly is thus a fundamental necessity.

State-of-the-art solves this problem by injecting invari-
ants into the systems’ source code such that they are being
checked alongside with the systems’ execution. This requires
deciding on the proper placement of invariant triggers to
ensure that the invariant is checked at the right times dur-
ing a system’s execution (a human activity). Unfortunately,
present approaches do not guarantee correctness except for
localized invariants whose scope is limited to a single class or
method. Yet, many interesting invariants are non-localized
and span multiple classes such as the drone invariant exam-
ple discussed above which involves a Drone and an Airspace.
This invariant obviously needs to be checked every time the
location of the drone changes. For example, during method
calls that modify the location fields of a drone. Unfortu-
nately, this is not enough because if the drone is assigned to
another airspace then the drone’s location may not change
but due to its airspace change it may find itself violating
the invariant. The invariant thus also needs to be checked
whenever the drone’s airspace changes. And there may be
other locations.

One dilemma of invariant checking is that failure to iden-
tify all trigger locations in the system’s code implies failure
to detect all invariant violations and hence invalid system
states (trigger placement problem). A trivial solution is to
place invariant triggers throughout the entire code but this
would lead to unscalable executions. Most state-of-the-art
thus limited the locations where invariant triggers are placed
but to the best of our knowledge no approach is able to de-
cide this correctly and automatically. Another dilemma is
that each location may require a different way of checking
the invariant (invariant re-writing problem). For example,
from the perspective of a drone, we need to check the drone’s
location with respect to its single airspace but from the per-
spective of the airspace we need to check all drones that are

within it whenever, for example, the airspace’s boundary
changes. Both invariant versions express the same invalid
state but they have to be written differently because they
focus on different changes - a change in the drone’s location
versus a change in the airspace’s location. Finally, there
is the evolution problem in that both the invariant trigger
placement and the invariant rewriting are affected by code
evolution. Those problems are thus not one-time problems
whose cost might be rationalized as acceptable. State-of-the-
art rarely acknowledges that invariant trigger placement are
rewriting are recurring costs as code changes may require
invariant changes and/or changes in trigger placement.

This paper contributes a fully automated, correct, and
scalable approach to validating arbitrary, user-definable in-
variants. Contrary to most state-of-the-art, our approach
does not place invariants within the code but rather ob-
serves the code’s execution for cues to invariant checking.
Specifically, our approach instruments the executing code
to observed field (variable) changes and method calls and
then uses an existing constraint checker to validate the im-
plication of those changes and calls. Since exhaustive instru-
mentation would pose another kind of scalability problem,
our approach was optimized to only react to those fields
that are able to influence a given invariant. We found that
the instrumentation has only a roughly 30% computational
overhead and each invariant check has a constant computa-
tional overhead. Our approach’s performance is thus in line
with state-of-the-art and the improvement over the state-of-
the-art is thus in on the quality side by avoiding both the
trigger placement and re-writing problems. As input, our
approach merely requires a list of invariants. The handling
of the invariants and their continuous checking is fully au-
tomated. The correctness and scalability of our approach
were validated on 3 case studies covering 46 invariants. Our
current prototype is limited to Java and uses OCL as the
invariant language. However, the kinds of instrumentation
we performed are similar to the ones modern debuggers and
profilers use. We thus believe that our approach should be
readily applicable to other programming languages.

2. PROBLEM ILLUSTRATION

Let us focus next on the drone control system and our
desire to detect a drone leaving its assigned airspace. For
simplicity, we might want to think of an airspace as a cuboid
with its boundary being defined in terms of a coordinate (z,
y, z) and a width, height, and depth. The drones them-
selves have a position, also a coordinate (z, y, z). List-
ing [Tl shows a possible implementation of the Airspace and
the Drone classes including the invariant, which is imple-
mented as a Java method. The invariant ensures that an
assigned drone correctly references back to the airspace (bi-
directionality) and the drone’s location is within the bounds
of that airspace. The invariant returns true if the class is
in a valid state; otherwise it returns false. As is common
in practice, triggers for invariant checks are inserted man-
ually using the assert statement. The common notion of
invariants regarding design by contract is that an invariant
has to hold whenever an instance of its class is in a publicly
visible state [3]. In short, an object is in a publicly visible
state during the execution of a program, when no code from
the class definition is currently executed on the object (i.e.,
none of its methods can be called from the other objects).
Indeed, invariant placement seems trivial in this example. A

brute force, naive approach would add the assert trigger to
all method postconditions but this is generally perceived as
computationally expensive and impractical. Some state-of-
the-art limits the trigger placement but there are two main
problems discussed next.

class Drone {
double x, y, z = 0.0;
Airspace airspace = null;
Drone(Airspace airspace) {
this.airspace = airspace;

setLocation(double nx, double ny, double nz) {
this.x = nx; this.y=ny; this.z=yz;

assert checklInvariant();

}

boolean checkInvariant() {
return airspace != null && airspace.isinBounds(this)

&& airspace.drones.contains(this);
}

}

class Airspace {
Collection <Drone> drones;
double x, y, z, width, height, depth;
Airspace() {
drones = new ArrayList<Drone>();
setBounds(0, 0, 0, 0, 0, 0);

void addDrone(Drone d) {

drones.add(d);
d.airspace = this;
assert checkInvariant();

}

void removeDrone(Drone d) {
drones.remove(d);
d.airspace = null;
assert checkInvariant();

void setBounds(double x, double y, double z, double
w, double h, double d) {
this.x = x; this.y = y; this.z = z;
this.width = w; this.height = h; this.depth = d;
assert checkInvariant();

boolean isInBounds(Drone d) {
return (d.x > x && d.x < x+width && d.y > y &&
d.y < y+height && d.z > x && d.z < z+depth);
}

boolean checkInvariant() {
for (Drone d : drones) {
if !(d.airspace == this && isInBounds(d))
return false;
}

return true;

}
}

Listing 1: Airspace and Drone Implementation

2.1 Invariant Re-Writing Problem

The first problem we observe is that the developer has to
write the invariant twice (manually) in this example. Both
invariants, the one in the Airspace class and the one in the

Drone class, check for the same illegal state but they have to
do so differently (notice the different, albeit similar check-
Invariant methods in the Drone and Airspace classes in
Listing [T). Usually this is achieved by re-writing the invari-
ant to fit the perspective of a class. To the best of our knowl-
edge, no existing approach is able to automate the rewriting
problem and it is easy to see that manual re-writing can be
error-prone and, worse, seems redundant. However, without
this re-written invariant, it would be hard or computation-
ally very expensive to detect invariant violations caused by
changes in a drone.

2.2 Invariant Placement Problem

The second problem we can observe, is that the developer
has to decide on the proper trigger locations for the invari-
ant checks. In Listing[I] triggers are identifiable through the
assert statement and we see that most methods include one
as the final statement. Invariant checking happens during
systems executionS whenever such a statement is reached.
An unnecessary trigger reduces execution performance and
may even lead to false invariant detection (i.e., when the
class is not in a publicly visible state). Exhaustive invari-
ant checking is thus not desirable (see Section [6] for more
details). A missing trigger, on the other hand, is also not
desirable we may fail to identify an invariant violation. In
state-of-the-art it is thus necessary manually to decide where
to place triggers and even in this simple example it is not
trivial as our Listing [I] has an error. Let us consider more
closely the bi-directionality between Airspace and Drone.
Figure [1 shows two possible states of a drone in context of
two airspaces. The initial state shown in Figure [Tal is per-
fectly fine and does not violate the bi-directionality of the
invariant. After calling a2.addDrone(d), it transitions into
the state shown in Figure [[B] which is broken since a drone
per our definition cannot be in two airspaces at once and our
implementation of addDrone is missing the removal from the
old airspace. Using our manually inserted assertions, we are
unable to detect this error at this time, since the invariant
will only be checked for the airspace a2 (note that it was
a2’s addDrone method that got called). After all, airspace
a2 is in a valid state thereafter but not airspace al. Due
to the nature of the implementation, the invariant is only
checked in the airspace a2 and the violation in airspace al
goes unnoticed until a method call on al finally triggers the
necessary invariant check. This may happen much latter or
never. Correct invariant placement thus requires two trig-
gers inside the addDrone method - one to check the new
airspace and the other to check the old airspace. Manual
invariant trigger placement is thus not only time consum-
ing but also error prone. Moreover, the trigger placements
need to be maintained and evolved with the code (e.g., when
methods are added or modified). For example, if we add a
new method setAirspace in Drone then we need to consider
whether to place a trigger there also.

3. VISION AND RESEARCH QUESTIONS

Our vision is that the developer defines single versions of
invariants only and the approach fully automatically, scal-

ably, and correctly handles the invariant placement and rewrit-

ing - even when the code evolves. Instant feedback should
be provided as soon as an invariant is violated. Our vi-
sion is thus that invariant checking is performed live during
the systems’ execution. Next we introduce our approach

drones

airspace

d:Drone I%

(a) Initial State

al:Airspace I
drones
d:Drone I}:

airspace

drones

(b) Broken State after Change
Figure 1: Example Instantiation of the Drone Example

Invariant
Invariant Instances
Definitions Scope
T creates/ i
destroys
checks
| validates | | updates
searches
Invariant Constraint
Analyzer [— notifies >
Checker
Core
A
notifications reports
Observer
User
Target Application Interface

Figure 2: Architecture Overview of our Approach

to invariant checking and in the evaluation we answer the
following questions:

1. Does our approach avoid the manual invariant place-
ment problem?

2. Does our approach avoid the manual re-writing prob-
lem?

3. Is our approach guaranteed correct?
4. Does our approach scale?

5. Does our approach handle code evolution?

4. APPROACH

The basic principles of our approach follows previous work
on design model consistency checking [4] [5] [6]. An architec-
tural overview is depicted in Figure[2l The core is the Invari-
ant Analyzer Core which coordinates all other components.
It receives notifications about object creations, method calls,

Airspace

x:double

y:double
ORI G z:double
x:double f * drones width:double

) height:double
y:double Y airspace 1| gepth:double

z:double

addDrone (d:Drone)
removeDrone (d:Drone)
isInBounds (d:Drone)
changeBounds(. . .)

/
/
/
Vi

Invariant:
drones->forall(d | d.airspace == self and
self.isInBounds(d))

Figure 3: Single Invariant for the Drone Example

field modifications, and object destruction as these notifica-
tions are potentially state changing events and thus require
our attention. These events are generated by instrumenting
the execution environment (presently done in Java as a proof
of concept). Upon receiving such notifications, depending
on the type of notification, invariants are instantiated and
evaluated, which will be explained in detail in Section (.l
Invariant Definitions represent the invariants provided by
the developer. Invariants are expected to have a context,
which is a reference to a class for which the invariant must
hold. As we have seen above, there are as many contexts
as there are versions. In our approach the developer may
choose any arbitrary version (hence and arbitrary context).

For example, the developer may want to define an invari-
ant for Airspace as in Figure [B] where the context of the
invariant in Figure [3] is the Airspace class as indicated by
the dashed line. The reverse invariant for Drone does not
have to be defined explicitly but is implied. Since a class
might be instantiated multiple times into objects and these
objects might be in different states during execution (e.g.,
in Figure[I] we see two instances of Airspace and their fields
obviously differ), we require a separate evaluation for each
instance. In our approach, we handle this by defining Invari-
ant Instances to mirror class instances. That is, for each
invariant definition there are as many invariant instances
as there are instances of invariant definition’s context (e.g.,
there would be two invariant instances for the two Airspace
objects in Figure [I] but no invariant instance for the Drone
object since no invariant was defined with Drone as its con-
text). Each invariant instance is tasked with checking its
invariant definition on the object it is assigned to. We refer
to a context element as the object for which an invariant
instance is responsible for. Invariant Instances also contain
a change impact Scope, which is a set of references to object
fields that affect the validity of the invariant. We define the
individual elements of a Scope as scope elements. How the
Scope is computed is explained below but the key point is
that the scope identifies which notification events (e. g., field
modifications, see above) should trigger the re-validation of
its invariant instance. The Constraint Checker is responsi-
ble for validating the Invariant Instances and also keeps the

scope up-to-date. Information about the instances and their
validation results are reported to the User Interface.

4.1 Notification Scenarios

As previously mentioned, our approach reacts to events
in an observed target application. Events of interest to us
are state-changing activities that occur during the execu-
tion of the system. These are the creation of a new object,
the modification of a field, or the destruction of an object.
Usually multiple notifications about such field modifications,
creations, and destruction get collected as the object transi-
tions between publicly visible states (recall Section [2]). Such
transitions are simply executions that include method calls
of a given object in question where we define an Interval
to be the time between such publicly visible states. Invari-
ant checking should occur at the end of each such interval.
Next we will discuss each of the notifications that trigger
the Invariant Analyzer Core to take a look at the notifica-
tions collected since the last trigger event and how it reacts
to them. Algorithm [I] shows a brief overview how we de-
termine which invariant instances need to be instantiated or
re-validated. CS denotes the set of changes collected dur-
ing a given interval. The type of a change may either be
a field modification, object creation or deletion. The set of
all currently managed invariant instances is referred to as
II and SFE denotes the set of all scope elements in any of

the individual invariant instance’s scopes (i.e. |J #i.scope).
HeIT

Please note that the depicted algorithm is overly simplified

and does not depict optimizations.

4.1.1 Creation of a New Object

We need to keep track of the objects existing in the tar-
get application (referring to Lines in Algorithm [J).
For example, in Figure [Il we illustrated a scenario where
there were two objects of type Airspace and an object of
type Drone. The problem of incorrect invariant placement
discussed above were due to the fact that existing state-of-
the-art often fails to keep track of every object to ensure
that the invariants of all affected objects are evaluated —
not just the invariant of the one who experienced a state
change. As a consequence the creation of an object is some-
thing our approach needs to keep track of. The triggering
notification for this scenario is when the constructor of the
object in question is exited. Upon receiving this event the
Invariant Definitions is searched to find all invariants whose
context element is the type of the newly created object it
is assignable to. For every match found a new Invariant
Instance is created and immediately validated by the Con-
sistency Checker. For example, when object al is created
than an instance of the invariant in Figure [J is created be-
cause the invariant’s context element is Airspace, which is
the same as the created object’s type. We denote this invari-
ant instance as Invariant[al]. Similarly, another invari-
ant instance is created for a2 — denoted as Invariant[a2].
However, no invariant instance is created when Drone d is
instantiated because there is no invariant with this context
element (recall that our approach does not require invariant
re-writing).

4.1.2 Destruction of an Object

In an object orientated environment, objects have a lim-
ited lifetime. The disappearance of an object will not change
the outcome of any invariant instance,instead it causes an

Algorithm 1 Analyzing Changes and triggering Invariant
Instance validations
Input: a set of changes C'S

1: I1. < ({the set of invariant instances to validate}

2: II. <+ 0 {the set of newly created invariant instances}
3: II, + 0 {the set of removed invariant instances}

4: for all change € CS do

5: if change.type = MOD then

6: for all se € SE do

T if se.object = change.object N se.field =

change. field then

8: Il. <+ II. U se.iinstances

9: end if

10: end for

11: else if change.type = CREATE then

12: for all ¢ € {&x € I | change.object.type =

z.context} do
13: instantiate new invariant instance i¢ of invariant
i with context element change.object

14: Il + II. U {ii}

15: end for

16: else if change.type = DELETE then

17: for all it € {& € II | zm.contextElement =

change.object} do

18: 11« 11U {ii}

19: end for
20: end if
21: end for

22: Il «+ II.UII,

23: [T+ 11U,

24: II < IT\II.

25: report creation of invariant instances 1.

26: report removal of invariant instances 11,

27: for all i3 € I]. do

28: validate invariant instance i and update its scope
29: report new result and scope of ii

30: end for

invariant instance to become obsolete. Although an invari-
ant may ensure that an object with certain properties exits
in a collection and deleting it may violate the invariant, prior
to the deletion a notification stating that the contents of the
collection changes will ensure that the related invariant in-
stances are re-validated. Thus, upon receiving a deletion no-
tification the Invariant Instances get searched for instances
associated with the object to be destroyed and the Invariant
Analyzer Core takes care destroying the associated invari-
ant instances (as shown in Lines[T6H20 in Algorithm/[l). The
destruction event is thus a house-keeping event that notifies
us of objects that no longer need to be monitored.

4.1.3 Field Modification

In object-oriented systems, the state of an object is de-
fined by the values of its fields — e. g., the location value of a
Drone instance. Usually, the state of an object will change
over time. This is only possible in response to code execution
—e.g., a method call such as setBounds in Airspace which
modifies the fields x, y, z, etc. Whenever fields change, the
system state may change and become invalid. Hence, the
invariant needs to be re-validated at these times to check
for possible invalid state changes. Since invalid states are
allowed for as long as the object is not in a publicly visible

state [3] it is not desired to react immediately to field modi-
fications. A field modification is thus a state changing event
but it should not be used as a trigger for invariant check-
ing. Similar to existing approaches, we use the transition to
a publicly visible state, i.e. method calls for this purpose,
to trigger the actual invariant check. Since multiple field
modifications may occur between publicly visible states, all
these field modifications must be queued up. Upon reaching
a publicly visible state, the Invariant Instances get searched
for instances that are affected by the queued field modi-
fications. The Invariant Analyzer Core determines which
invariant instances require re-validaton by comparing the in-
variant instance’s scope with the queued field modifications.
Recall that the scope contains a set of all fields whose change
should trigger a re-validation. Thus, if at least one field mod-
ification is contained in an invariant instance’s scope then
this invariant instance is affected by the modification and re-
quires re-validation. How the scope is computed is discussed
below in Section

Note that not all intervals between publicly visible states
require invariant re-validations (i.e., this is something a brute
force approach might do). A fair amount of methods merely
query the state of an object without actually modifying it
(e.g., “getter” methods); or they might modify a field that
is not in the scope of any invariant instance. In such a
case whichever invariant did hold beforehand will hold af-
terward. In the case of non-state changing methods, ex-
isting approaches for invariant checking offer the ability to
mark such methods as simple queries, instructing it to not
generate / perform any invariant checks after said method
was called (see[dl). However, using such markers is another
source for human introduced errors. During the evolution
of a software system a simple query may become a method
that does change the state of an object. Not removing the
markers in such a case may cause errors to go unnoticed.
Using our approach it is not required to use markers or any
manual input as it will detect state-changing methods au-
tomatically during run-time. In fact, this is quite simple
because a non-state-changing method will not cause a field
modification during its execution.

As an example of how our approach reacts to a field mod-
ification, consider the method addDrone from Listing [T] exe-
cuted on an Airspace object a2 as described in Problem 2.2
When this method 1is called then the statement
drones.add(d) is executed which modifies the collection
drones in object a2. In response, the Invariant Analyzer
Core would receive the notification about a field modifica-
tion in a2.drones. And since a2.drones is in the scope of
the invariant instance Invariant[a2], it is affected by this
change. However, since the method has not finished execut-
ing yet, a2 is not in a publicly visible state. Triggering an
invariant validation at this point would result in a violation,
which is in fact a false violation. Indeed, after the second
statement d.airspace = this, this violation will resolve it-
self, showing the need to prevent invariant checking during
intermediate invalid states. Hence, our approach collects all
notifications until the method is exited and the Invariant
Analyzer Core would react to the notifications about field
assignments for {a2.drones, d.airspace} (i.e., these are the
two field changes that occurred in that method). The In-
variant Analyzer Core would discover that Invariant[a2]
requires re-validation because its scope contains a2.drones.
The Invariant Analyzer Core thus notifies the Constraint

Checker to re-validate it. Since Invariant[a2] is still valid,
the Invariant Analyzer Core would move on to the next noti-
fication. There, the Invariant Analyzer Core would discover
that Invariant[al] requires re-validation because its scope
contains d.airspace. As we know, Invariant[al] is vio-
lated now as was illustrated and discussed in Figure[Il Since
the change happened in a2 and al remained unchanged,
many existing approaches would miss the violation to al.
Our approach, on the other hand, detects this problem be-
cause we have an invariant instance dedicated for every ob-
ject that needs one. However, we have yet to reveal how
invariant instances built up the scope. This is discussed
next.

4.2 Constraint Checker

The Constraint Checker is used to validate and re-validate
Invariant Instances and update their Scope. The scope of an
Invariant Instance is simply the list of fields that affect its
validity. Since the validity of an invariant instance is based
on the fields it investigates, the scope is the list of all fields
that the invariant instance required during validation. Our
approach thus also observes field read accesses in addition to
field modifications. Whenever the Constraint Checker vali-
dates an invariant instance, all fields it accesses are recorded.
The Scope is thus the union of all field accesses it recorded
which we can be build up by observing the execution of the
invariant. This observation and therefore the Scope includes
field read accesses from the invariant itself and also from all
methods that are used within the invariant, such as isIn-
Bounds from our example. This is necessary since a change
introduced to one of those fields may cause the method to
return a different value and therefore possibly change the re-
sult of the invariant instance. For example, Invariant [a1]
accessed during its validation for the initial state in Fig-
ure [[a] al’s location (x, y, z, etc.) and compared it with
each drone’s location (d.x, d.y, d.z); and it made sure that
d.airspace is pointing back towards al. The set of accessed
fields is thus: {al.x, al.y, al.z, al.width, al.length,
al.depth, al.drones, d.x, d.y, d.z, d.airspace}. Note
that Invariant[al] did not access fields such as a2.x or
a2.drones. These fields are accessed by Invariant [a2]. So,
after calling a2.addDrone(d), which was described in Prob-
lem 2] the fields a2.drones and d.airspace get modified:
hence the notification being {a2.drones, d.airspace} as
was discussed inSection Il The field a2.drones was pre-
viously accessed during the validation of Invariant[a2].
Hence, this instance must be re-validated. Moreover, the
field d.airspace was previously accessed during the vali-
dation of Invariant([al]. That instance must also be re-
validated. Our approach thus simply and elegantly solves
the flaws of the local invariant checking problem without
requiring any invariant re-writing (discussed in Section [2]).

4.2.1 First-Time Validation of an Invariant Instance

As we know, an Invariant Instance is created together
with the object it monitors. The Invariant Definition is
used as a template and references to self are replaced with
the actual object the invariant monitors (i.e., self refers to
the object for which the invariant instances was created for).
After the creation, the instance is immediately validated and
hence its Scope is set.

Imagine during the execution of our example that after the
state shown in Figure[Ih] at some point, a new Airspace a3

is created. After the instantiation is complete, we collect all
relevant invariants and instantiate them as well (e.g. In-
variant[a3]). We validate those new invariant instances
and store their scope. Since initially the drones collection is
empty, no drone objects will be accessed. After the valida-
tion is completed we store the scope of the invariant instance
and report the result. In this example the scope of Invari-
ant[a3] would be {a3.drones} only because there are no
drones assigned to the airspace yet.

4.2.2 Re-validation of an Invariant Instance

We already discussed that the re-validation of an invari-
ant instance is triggered if an execution notification matches
an element in its scope. During the re-validation of Invari-
ant Instances the result can change but, even more inter-
estingly, the Scope can change also. Consider the example
given in Section [£2.I] where the initial scope of Invari-
ant [a3] contained only {a3.drones}. Now consider a call
to a3.addDrone(d). This would of course cause the invariant
instance Invariant[a3] to be re-validated (among others,
which would fail, as pointed out in Figure [IH]), as indicated
in Lines BHIO in Algorithm [). However, since the drones
collection would not be empty anymore, the re-validation
would also access the newly assigned drone. As a result,
the Scope of Invariant[a3] would change to {a3.drones,
a3.x, a3.y, a3.z, a3.width, a3.height, a3.depth,
d.x, d.y, d.z, d.airspace}.

4.3 Implementation Details

Our prototypical implementation has been fully imple-
mented in the Java programming language and is able to
observe and check invariants for arbitrary programs running
in a Java Virtual Machine (JVM). The implementation is ac-
cording to Figure 2l The Invariant Definitions are written
in OCL, the implementation includes a parser, which is also
used for code-completion. In fact, the available types in a
JVM may change over time due class loading / unloading.
Thus, we are able to cope with lazy-loading in state-of-the-
art run-time environments. A graphical User Interface is
built on top of the Eclipse Platform. It offers an editor
for defining invariants and visualizes the results of invari-
ant checks and their scopes. For the Observer component
we perform byte-code instrumentation of the loaded class.
We already mentioned, that we are able to cope with lazy-
loading most JVMs perform. Although the appearance of
a new class does not change the result of any invariant in-
stance, there may be invariants in the invariant storage for
a type that does not exist yet. Therefore, additionally to
the events mentioned beforehand, we also have to observe
the loading / unloading of classes. Whenever the run-time
environment loads a new class we treat it as if the invariants
defined on that class have just been added.

Since none of the components of our approach are spe-
cific to Java and/or OCL, they could be adapted to work
with other constraint languages or run-time environments.
Indeed, we have two variations of our tool: one where the in-
variant checker uses byte code instruction to run within the
process of the system being monitored and one where the
invariant checker uses the Java Platform Debugger Architec-
ture [7] to run in another process. There is a simple trade-off.
The in-process implementation is much faster compared to
the cross-process communication. However, the latter allows
for “external debugging” where the invariant checker does

Table 1: Case Studies used for Evaluation

Application | LOC | #c | #m | #1 | i
ATM 572 13 | 8.769 | 1.846 | 17
jPacMan 1595 25| 8.459 | 2333 | 21
GanttProject | 48405 | 1059 | 6.424 | 2.361 8

not have to execute on the same workstation as the system
being monitored. Screen snap shots and a short tool demon-
stration can be viewed at
http://www.sea.jku.at /tools/invariantchecker/.

5. EVALUATION

We empirically evaluated our approach to assess our re-
search questions stated in Section ?? using three different
open source applications as case studies. Details for our case
studies are given in Table[d] like the lines of code (LOC), the
number of classes (#c¢), the average number of methods per
class (#m), the average number of object fields (#f) and
the number of class invariants (#i) we used. The invari-
ants we used were mostly defined by the original developers
of these applications, either directly implemented in Java,
or stated as annotations using JML. Others were derived
by examining the applications source code or supplied test
cases.

For evaluating our approach we had three major concerns:

1. Correctness: Is our approach able to detect all invari-
ant violations?

2. Scalability: How does our approach scale up with in-
creasing “size” of a system, especially increasing amount
of objects and invariants?

3. Performance: How does our approach perform gener-
ally, i.e. to which degree does it slow down the “ordi-
nary” execution of a system?

Recall that two additional research questions focused on
whether our approach solved the rewriting and trigger place-
ment problems. These are briefly discussed also though they
are proven through the algorithm and its correctness. That
is, our evaluation did not require manual rewriting or trigger
placement but still functioned correctly and scalably as will
be shown next. The correctness and scalability evaluation
thus also demonstrates the correct solving of the rewriting
and trigger placement problems.

To address these questions we executed the test cases
shipped with the source code of the applications and ana-
lyzed the behavior of our approach. All time measurements
stated in this section were performed on a standard PC with
an Intel Q9550@2.83Ghz processor and 8GB of RAM.

5.1 Correctness

To verify correctness (research question 3), we compared
our results with an excessive brute-force approach. This
approach revalidates all the invariants at all times after
each change from a publicly visible state, which is correct
by definition. While it is computationally inscalable, the
brute force approach does provide us with a golden standard
for when invariants are violated. This is done by checking
whether each violation, or more precisely each change of
an invariant instances result, detected by the brute-force
approach is also detected by our approach. Although this

Table 2: Invariant checks performed

| System | # checks | instance changes |
ATM 112 43
jPacMan 9386 7108
GanttProject 4305 1996

Table 3: Objects created during system run
| Application | # Objects |

ATM 112
jPacMan 63218
GanttProject 230643

does not formally prove completeness, the extensive empir-
ical tests involving 13,803 checks revealed no single case of
incorrectness (see Table [2) and the large number of tests
strongly support this.

5.2 Scalability

This subsection assesses the issue of scalability (research
question 4). Typically, the scalability of a system is deter-
mined by complexity metrics like lines of code. However,
for invariant checking this is not useful because such met-
rics reveal little about the number of class instances that are
created or field manipulations that occur (e.g., a small sys-
tem could trigger more invariant checks than a larger one).
We thus opted to measure scalability using a more mean-
ingful dynamic size — in particular, the number of class in-
stances (w) as they represent data/memory. Table [3] shows
the overall amount of objects created by our case studies.
The following evaluation will provide formal arguments and
empirical evidence that our approach does scale and behaves
linear in terms of computational complexity.

The scalability of our approach depends on several fac-
tors and we investigated their complexity and impact on
scalability. Whenever the invariant checking mechanism is
triggered, two major operations are performed: 1) looking
up the invariant instances that need to be (re)validated, if
any (Tiookup) and 2) validating them (Teyqi). For a single
interval, we can state the following complexity:

Tinterval = 0] (,I'lookup + Teval)

Tiookup is dependent on two factors, the number of col-
lected change notifications () and how long it takes to per-
form a lookup (tiookup). Although not actually constant,
we found that v will remain relatively stable during execu-
tion. Although it could rise in larger systems, we found that
it is in fact independent of the system size in practice be-
cause each method/interval typically only executes so many
statements and methods in larger systems do not necessarily
execute more statements than methods in smaller systems
(we omit this data for brevity but below we also demon-
strate the scalability of v, which is a random subset of 7).
The individual lookup (tieokup) is implemented as a simple
hashtable lookup and thus constant.

7 ... number of changes
ticokup - - - time needed for asingle lookup — O(1)
Tlookup =0 ("Y . tlookup) =0 (’Y)

Tevar depends on how many of the notifications are ac-
tually relevant (+,), how invariant instances are affected by

http://www.sea.jku.at/tools/invariantchecker/

Table 4: Maximum number of intervals
| Application | # Intervals |

ATM 90
jPacMan 63965
GanttProject 231974

the changes and the time required to perform the invariant
checks (tevai). 7r are those changes that are in the scope
of one the invariant instances or object creations triggering
the creation of an invariant instance and will remain mostly
constant similar to v. Below we demonstrate that this is
in fact true. The number of affected invariant instances de-
pends on ~, and how many invariant instances are affected
per change (k). Below we further decompose and analyze
those factors. We demonstrate that both s and teyq; are not
strictly constants but will remain small and stable during
execution.

Yr ... relevant changes
Y Sy
teval - - - time needed to validate a single invariant
K ... affected invariant instances per change

Teval = (0] ('77“ ‘K- te'ual)

Overall, the complexity of our approach is linear. During
execution our invariant checking algorithm will be triggered
m times, where m represents the number of intervals, and
since Tinterval remains mostly constant the overall complex-
ity is linear.

Toverait = M - Tinterval = O (m . (’Ym + Ym - K- teval))

Empirical evidence for the linear behavior is provided in
Figure @l showing that T,yerqn did in fact increase linearly
with m in our case studies. In this figure we normalized
the number of intervals (0% being 0 and 100% the max-
imum) since they differed greatly in the different system
runs. Table [4] shows the total number of intervals for each
case study. The unusual high validation times in case of
the ATM example is caused by two invariants iterating over
a huge array. However, these invariants are only validated
after initialization and Tpyerqu rises linearly from there on.
Note that the complexity of the actual invariant is an ex-
ternal, user-defined factor that is not under the control of
our approach. This high validation time is thus not signif-
icant because every invariant checking approach is equally
affected by this. What is significant is that our approach ex-
hibited linear run-time performance which is contrary to a
brute force approach that would be exponentially complex.

5.2.1 Relevant changes

We claimed that 7, remains mostly constant, i. e. is inde-
pendent of the system size w. We provide empirical evidence
for this claim in Figure Bl showing that 7, does not grow
with increasing w. Since we checked 13,803 invariants, we
grouped w in 5% increments and present their averages. We
see that in average only very few changes trigger relevant
invariant checking (summarized in Table Bl which shows the
number of average relevant changes per interval m).

5.2.2 Affected invariant instances

o
o
o _
Q
—
—~ -
£
3
: 8
E ®
‘0
E
g
[= § _
5 5
<
h=l
K&
>
o] o
L 8 A
K] =1
£
3 ATM
£ —— jPacMan
—— GanttProject

I I I I I I
0 20 40 60 80 100

Intervals percentage (m)
Figure 4: Relation between validation time and intervals

Table 5: Average changes per interval

| System | Average Changes |
ATM 0.867
jPacMan 0.083
GanttProject 0.015

The factor x depends on the number of defined invariants
r as well as their complexity. The more invariants exist,
the more likely it is that one of them accesses a particular
scope element. The number of defined invariants remains
constant during a system’s execution. One might think that
might not scale during the execution due to more context
elements (o - w) instantiating over time. The factor o (0 <
o < 1) describes how many of the existing objects are actual
context elements of invariant instances. Figure[6lshows with
increasing size (and thus the number of context elements)
does not necessarily increase. We used a similar grouping as
already explained for Figure

5.2.3 Validation time..,.

The time required to validate an invariant instance (teva1)
depends on the computational complexity of the invariant
definition. Our approach does not optimize the checking of
individual invariants and all approaches to invariant check-
ing are affected by this factor. In only a few cases did we no-
tice that the checking of individual invariants grows with the
number of objects existing during the execution of a system.
This usually occurs when using expressions that iterate over
collections. However, we did find that not even te,q; actually
depends on the number of existing objects w — there were
only a few exceptions as was already discussed. Empirical
evidence thus suggests that the evaluation of an invariant is
actually constant for most constraints because they tend to
access a fixed amount of objects or a fixed amount of ex-
pressions, regardless of size. Figure [7] demonstrates that the
time required to validate individual invariants is small and
does not grow with an increasing dynamic system size.

ATM
2 1 X jPacMan
+ GanttProject
= <]
@ -
()
(=]
c
[
<
(8]
I+
0 | X
° X
X X
X
g7*********i**§z¢++*»:~~u
T T T T T T
0 20 40 60 80 100

size percentage; w
Figure 5: Relevant changes v, depending on system size w

5.3 Invariant Placement, Re-Writing, and Evo-

lution

The manual invariant placement and re-writing problems
(research question 1 and 2) are avoided implicitly through
our algorithm. Since for all our case studies we never man-
ually decided on invariant trigger placement and given that
the approach was correct always we conclude that our ap-
proach indeed avoids the manual invariant placement prob-
lem. The correctness evaluation also implicitly demonstrates
that invariant triggering locations never have to be main-
tained whenever the code evolves since manual placement
is no longer necessary - i.e., if our approach functioned cor-
rectly for all given case study systems and all given invari-
ants, we have strong support in claiming that it would func-
tion correctly with other versions also. The same applies
to the re-writing problem because we had a range of non-
localized invariants yet our approach was able to correctly
validate them without requiring re-writing.

5.4 Performance

‘While our approach does scale, it does not mean that there
is no performance overhead. During the evaluation we did
recognize a noticeable performance decrease compared to a
system run without our invariant checker. Some of this over-
head is caused by the invariant checks themselves. But, we
can safely ignore this overhead since other approaches would
have this overhead also. What distinguishes our approach
from most existing ones is that also require the runtime in-
strumentation of executing system which causes additional
overhead. On average we measured an overhead of ~ 200%
(i.e., the program executes with 1/3 the performance it nor-
mally does) which we believe is already acceptable in most
situations. However, we must mention that the additional
overhead may violate performance requirements (though any
existing approach likely would do that also). Currently, we
are working on a more efficient solution, which is not yet
fully implemented but first measurements promises an over-
head of only ~ 30%.

5.5 Threats to Validity

9 ATM
X jPacMan
+ GanttProject
4
T %
(=2
=
IS
<
[5}
g e
Q
o
C
a
1}
£ <
=l
Q
8
=
< -
o * X xox o x x %
BRI S S S S S AR
o -

0 20 40 60 80 100

size percentage; w
Figure 6: Affected invariant instances k per change with
increasing size w

We see the biggest threat to the validity of the evalua-
tion in the chosen example applications. One might argue
that the applications used are small. However, the largest
system with nearly 50KLOC is far from trivial and our em-
pirical evaluation did not reveal any scalability issues. Hence
we believe that larger systems would perform similarly well.
Another argument could be that the chosen case studies were
not representative because they represented open source sys-
tems only. However, open source systems are commonly
used for these studies and since they cover different domains
we believe they are representative. Finally, one might argue
that the invariants could have been even more diverse / com-
plex. We certainly believe that it is possible to find more
complex invariants. However, the 46 invariants we used were
not defined by us but were available through the systems.
They are thus representative of the kinds of invariants their
developers cared about. Given that nearly all invariants of
all three systems scaled, we believe that invariants in gen-
eral would scale quite well (note that invariant scalability
is a problem for all approaches and not limited to our ap-
proach).

6. RELATED WORK

Since our approach is in the category of run-time monitor-
ing, it shares some commonalities with existing approaches.
In particular it is most closely related with design by con-
tract [T, [3] that enables invariant checks during run-time.
This was first introduced in Eiffel [§], and was an integral
part of the programming language. The Java Modeling Lan-
guage [9] (JML) is a language aimed at providing support
for documenting contracts written in Java and provides tool
support for creating run-time checks of these contracts. An
approach for the .NET family is provided by Microsoft [10]
11]. Contrary to our approach those approaches weave the
code for invariant checks into original code, thus all contracts
need to be defined prior to execution and known at compile
time. Our approach on the other hand is decoupled from the
original application (no code is generated at compile time to
enforce invariants), enabling users to modify an invariants

43530
|

ATM
X jPacMan
+ GanttProject
o
— 8
%]
é -
? o
S8
5 —
£
c o
i) — 7]
IS
S
S 44

T T T T T I
0.0 0.2 0.4 0.6 0.8 1.0

size percentage; w
Figure 7: Validation time t.y,q; depending on number of ex-
isting objects w

definition at run-time, add new ones, etc. Other approaches
like shown in [12] do not alter the existing code, but instead
make use of design patterns and generate new classes that
include the invariant checks. When executing the program
one may chose whether to use classes that include the checks
or the ones without. Those approaches tend to be inefficient,
in a sense that they may perform checks even if the state
did not change (what we defined as the invariants scope).
Furthermore, those approaches suffer from the flaw of local
checks as well as the re-writting problem, as described in
Section 2] since they only introduce the checks in the classes
for which they were defined (or subclasses thereof). Our
approach on the other hand observes an applications execu-
tion from a global perspective, not solely reacting to events
occurring in the object itself. Our approach is thus able to
handle arbitrary invariants and is not limited to localized
invariants.

Run-time verification approaches also share some similar-
ities with our approach. Usually run-time verification tech-
niques are used to ensure a programs correct behavior [13],
whereas our approach is concerned with the correct state
of the underlying data structures. But, in both cases the
programs are instrumented to observe events during run-
time and react accordingly. In run-time verification tem-
poral logic is used to define behavioral properties that a
program has to fulfill and a sequence of events is checked
whether it fulfills the given properties. The temporal logic
formulas are transformed into code that represent a so called
monitor (usually representing some kind of state machine).
Events occurring during program execution are fed to the
monitor. The monitor transitions into an error state indi-
cates faulty behavior of the program. Approaches tend to
use linear temporal logic (LTL), or a variation thereof, for
defining behavioral properties [14] [I5] or provide their own
temporal logic language [16] 17, [18]. Most weave the gener-
ated monitors directly into the application code and provide
instant feedback during run-time if violations occur [16] [19]
18], but there also examples of techniques that record execu-
tion traces and may be used to analyze whether the system

run was correct. To some extent, run-time verification tech-
niques may be used to check class invariants as we do in
this paper (i.e. as a property that needs to be checked after
certain execution steps), but, to the best of our knowledge,
users need to know the concrete behavior of the program
to instruct after which events the invariant checks should
be executed - this is just another variation of the invariant
trigger problem. Using our approach, this is not necessary,
users only need to define the invariants and the algorithm
will determine whether invariant checks are required or not
at arbitrary points during the execution.

Finally, Rosu et al. introduced a new programming paradigm

based on run-time monitoring [20, 2I].. Although run-time
verification approaches are usually concerned with verify-
ing the correct behavior of a program, there are some sim-
ilarities with our approach and their work shows a detailed
comparison of existing approaches for run-time monitoring.
They define various criteria for the various tools that differ-
entiate target language, constraint (invariant) language, the
time invariants are observed (immediately or after some post
processing), or the level of intrusiveness on the observed sys-
tem. Our approach follows along the line of most run-time
monitoring approaches that detect invariants immediately
when they occur. The other criteria are roughly irrelevant.
While our prototype is implemented for Java and uses OCL
constraints, our approach should not be limited to either.

7. CONCLUSION AND FUTURE WORK

This paper introduced a novel automated approach for
class invariant checking that tremendously reduced the user
effort required to handle invariants. Existing approaches
tend to be incomplete due to local checks and error-prone
due to manual invariant placement and invariant re-writing.
Our approach overcomes these weaknesses by observing the
system and automatically responding to execution notifica-
tions. We demonstrated that our approach scales and out-
perform brute-force invariant checkers. The future vision is
to provide additional support for helping a developer under-
stand and fix invariant violations in the system. We believe
that the additional data we collect during an invariant’s eval-
uation, like the method calls involved in the violation, the
scope elements with their values, as well as the changes that
caused the defect, is useful for debugging purposes. Further-
more, proposed fixing actions for data structures similar to
the ones explained by Reder [22], can also be used for de-
bugging purposes, as shown in [23].

Acknowledgments

The work was kindly supported by the Austrian Science
Fund (FWF): P23115-N23.

8. REFERENCES

[1] B. Meyer, “Applying "design by contract”,” IEEE
Computer, vol. 25, no. 10, pp. 40-51, 1992.

[2] J.-M. Jézéquel and B. Meyer, “Design by contract:
The lessons of ariane,” IEEE Computer, vol. 30, no. 1,
pp. 129-130, 1997.

[3] B. Meyer, Object-Oriented Software Construction, 2nd
Edition. Prentice-Hall, 1997.

[4] A. Egyed, “UML/Analyzer: A Tool for the Instant
Consistency Checking of UML Models,” in ICSE.
IEEE Computer Society, 2007, pp. 793-796.

[5]

20]

(21]

(22]

23]

A. Reder and A. Egyed, “Model/Analyzer: A Tool for structure repair,” in ICST.
Detecting, Visualizing and Fixing Design Errors in 2011, pp. 190-199.
UML,” in ASE, C. Pecheur, J. Andrews, and E. D.
Nitto, Eds. ACM, 2010, pp. 347-348.

A. Egyed, “Instant consistency checking for the UML,”
in ICSE, 2006, pp. 381-390.

Oracle Corporation, Java Platform Debugger
Architecture, 05 2013. [Online]. Available: http://docs.
oracle.com/

B. Meyer, FEiffel: The Language. Prentice-Hall, 1991.
G. Leavens and Y. Cheon, “Design by contract with
jml,” Draft, available from jmlspecs. org, 2006.
Microsoft Corporation, “Code contracts.” [Online].
Available: http://research.microsoft.com/en-us/
projects/contracts/

M. Fahndrich, M. Barnett, and F. Logozzo,
“Embedded contract languages,” in SAC, S. Y. Shin,
S. Ossowski, M. Schumacher, M. J. Palakal, and C.-C.
Hung, Eds. ACM, 2010, pp. 2103-2110.

B. A. Malloy and J. F. Power, “Exploiting design
patterns to automate validation of class invariants,”
Softw. Test., Verif. Reliab., vol. 16, no. 2, pp. 71-95,
2006.

Y. Falcone, K. Havelund, and G. Reger, “A tutorial on
runtime verification,” Summer School Marktoberdorf,
2012.

K. Havelund and G. Rosu, “Monitoring java programs
with java pathexplorer,” Electr. Notes Theor. Comput.
Sci., vol. 55, no. 2, pp. 200-217, 2001.

M. Kim, M. Viswanathan, H. Ben-Abdallah,

S. Kannan, I. Lee, and O. Sokolsky, “Formally
specified monitoring of temporal properties,” in
ECRTS. IEEE Computer Society, 1999, pp. 114-122.
M. d’Amorim and K. Havelund, “Event-based runtime
verification of java programs,” ACM SIGSOFT
Software Engineering Notes, vol. 30, no. 4, pp. 1-7,
2005.

H. Barringer, D. E. Rydeheard, and K. Havelund,
“Rule systems for run-time monitoring: from eagle to
ruler,” J. Log. Comput., vol. 20, no. 3, pp. 675-706,
2010.

D. Drusinsky, “The temporal rover and the atg rover,”
in SPIN, ser. Lecture Notes in Computer Science,

K. Havelund, J. Penix, and W. Visser, Eds., vol. 1885.
Springer, 2000, pp. 323-330.

H. Barringer, A. Goldberg, K. Havelund, and K. Sen,
“Rule-based runtime verification,” in VMCAI, ser.
Lecture Notes in Computer Science, B. Steffen and

G. Levi, Eds., vol. 2937. Springer, 2004, pp. 44-57.
G. Rosu et al., “Monitoring-Oriented Programming,”
01 2014. [Online]. Available: http://fsl.cs.illinois.edu/
index.php/Monitoring-Oriented Programming

P. O. Meredith, D. Jin, D. Griffith, F. Chen, and

G. Rosu, “An overview of the mop runtime verification
framework,” STTT, vol. 14, no. 3, pp. 249-289, 2012.
A. Reder and A. Egyed, “Computing repair trees for
resolving inconsistencies in design models,” in ASE,
M. Goedicke, T. Menzies, and M. Saeki, Eds. ACM,
2012, pp. 220-229.

M. Z. Malik, J. H. Siddiqui, and S. Khurshid,
“Constraint-based program debugging using data

IEEE Computer Society,

http://docs.oracle.com/
http://docs.oracle.com/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://fsl.cs.illinois.edu/index.php/Monitoring-Oriented_Programming
http://fsl.cs.illinois.edu/index.php/Monitoring-Oriented_Programming

	Introduction
	Problem Illustration
	Invariant Re-Writing Problem
	Invariant Placement Problem

	Vision and Research Questions
	Approach
	Notification Scenarios
	Creation of a New Object
	Destruction of an Object
	Field Modification

	Constraint Checker
	First-Time Validation of an Invariant Instance
	Re-validation of an Invariant Instance

	Implementation Details

	Evaluation
	Correctness
	Scalability
	Relevant changes r
	Affected invariant instances
	Validation time teval

	Invariant Placement, Re-Writing, and Evolution
	Performance
	Threats to Validity

	Related Work
	Conclusion And Future work
	References

