Page Areas:

Additional Information:


DK Nanocell

Logo DK Nanocell

We are taking part in the interdisciplinary graduate college called "Nanocell", with the project "Modelling of conformational transitions of fluorescent labelled proteins". ...  more of DK Nanocell (Titel)

Location Physics-Building

Location Physics-Building

Maps and directions to JKU. ...  more of Location Physics-Building (Titel)

LEO German-English Dictionary

Position Indication:


Many Particle Systems

Many Particle Theories provide the basis for understanding the macroscopic behavior of vast assemblies of interacting particles starting from their microscopic properties ("ab initio description"). The central goal is to explain observable quantities on the basis of the Hamiltonian.

"Many-body physics has provided a scientific playground of surprise and continuing revolution over the past half century ... the prospects for major conceptual discoveries remain as bright today. " (P. Coleman, 2003)

at present, our research interests focus on:

Quantum Fluids

We develop and apply modern theoretical approaches and computational methods for calculating the collective phenomena of Bose and Fermi liquids. Systems of particular interest are 4He, 3He and the electron liquid, both in 3D as well as in restricted geometries. Our research is primarily based on the (F)HNC and CBF approaches, which allow high precision results without being as computer-time demanding as simulations. In recent calculations we were able to demonstrate the importance of dynamic pair correlations both for bosons and fermions; furthermore we computed the transport currents relevant for scattering experiments.
(The above picture shows the dynamic structure factor of 3He.)

Finite Electron Systems

Major research efforts are underway worldwide for developing new (multiscale) approaches to nanoworld phenomena, such as clusters, fullerenes, quantum dots and quantum rings. Here our research is centered on the development and application of new (TD)DFT methods, including theoretical models as well as new numerical techniques.
We have developed a very fast real space DFT package in 2D as well as in 3D. 4th order splitting operator techniques are used to solve the eigenvalue problem and new methods motivated from many body theory are applied to reduce the number of s-c iterations in the solution of the KS-equations. The program has been successfully applied to the above mentioned systems.
You can download our code for free at
(The above picture shows the electron density in a buckminster fullerene with an endahedral Mg atom).

Paramagnetism in Superconductors

Superconductivity is generally associated with expulsion of magnetic flux and perfect diamagnetic behavior. The paramagnetic contribution of the electron spins is neglegibly small under usual conditions. However, if one studies a two-dimensional superconductor with magnetic field direction nearly parallel to the conducting planes, one finds a large paramagnetic contribution and a number of very unusual and interesting phenomena such as coexisting line-like and point-like order parameter zeros, stable antivortices, and an unusual pairing mechanism, in higher Landau levels, of the superconducting pair-wave function. These results have been obtained by solving the quasiclassical equations with Zeeman coupling near the upper critical field for arbitrary temperatures.
(The above picture shows a unit cell with two vortices and a single antivortex.)

Many Particle Systems

  • Univ.-Prof. Dr. Arthur Ernst
  • Verena Haberfellner
  • Univ.-Prof. Dr. Robert E. Zillich
  • em.Univ.-Prof. Dr. Eckhard Krotscheck
  • Univ.-Prof. Dr. Thomas Renger
  • Helga Böhm
  • Jürgen Drachta
  • Mathias Gartner BSc
  • Priv.-Doz. Dr. Klaus GERNOTH
  • BSc David Haider
  • DI Raphael Hobbiger
  • Dominik Kreil
  • Helmut Ortmayer BSc
  • DI Dr. Martin Panholzer
  • Clemens Staudinger BSc
  • Mag. Dr. Gerhard Tulzer BSc MSc

Please see our Team page for more information.