Page Areas:

Current Submenu:

Additional Information:


Position Indication:


Surface Modification

a. Univ. Prof. Dr. Johannes Heitz Dr. Klaus Piglmayer

Laser chemical processing is an expanding field which has found many actual and potential applications in micromechanics, metallurgy, integrated optics, semiconductor manufacture, chemical technology and medicine. Laser processing, of either extended areas or on a micrometer or even nanometer scale, results in etching, decomposition, material deposition or chemical transformation. Of special interest is Laser chemical processing at surfaces, which allows surface engineering, i.e. the production of hybrid materials with different functionality in the bulk and at a thin sub-micrometer surface layer.

Laser-assisted chemistry allows selective patterning of surfaces with different types of carbon nanomaterials, e.g. carbon nanotubes, diamond like and hydrogenated amorphous carbon. Of special interest is the formation of graphite or even graphene layers.

Surface modification and ablation of polymers by UV-laser light permit single-step surface patterning with lateral resolution down to the submicrometer range. Without damaging the bulk material, the thickness of the modified layer can be varied between less than 0.1 micrometer to several micrometers by changing the laser wavelength.

Various polymers such as PI, PET and PTFE are modified by laser irradiation in a chemical reactive or inert atmosphere or liquid. In this way, the surface roughness, its hydrophilic or hydrophobic behavior, its electrical properties, its adhesion to metal films, etc. can be changed. In addition, periodic structures such as ripples, naps, walls, and non-periodic structures, e.g. surface dendrites, are studied.

One actual topic in the research field "polymers" at the Institute of Applied Physics is the production of functional biomaterials. Photo-induced surface modification can result for instance in polymers with excellent biocompatibility. This means that human or mammalian cells adhere well at these surfaces and shown increased proliferation. Such surfaces are therefore interesting for the production of cell micro-arrays, e.g. for development of pharmaceutical drugs or for tissue engineering applications. The laser-induced micro- and nano-structures at polymer surfaces can be used for control of cell alignment and cell migration.


AFM images of CHO cells at laser-induced nano-ripples on polystyrene
E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, Biomaterials 29, 1796-1806 (2008)


Femtosecond laser-induced microstructures on Ti Substrates for reduced cell adhesion
J. Heitz, C. Plamadeala, M. Muck, O. Armbruster, W. Baumgartner, A. Weth, C. Steinwender, H. Blessberger, J. Kellermair, S. V. Kirner, J. Krüger, J. Bonse, A. S. Guntner, A. W. Hassel
Appl. Phys. A (2017) 123:734, DOI 10.1007/s00339-017-1352-0

Bioinspired polymer microstructures for directional transport of oily liquids
C. Plamadeala, F. Hischen, R. Friesenecker, R. Wollhofen, J. Jacak, G. Buchberger, E. Heiss, T.A. Klar, W. Baumgartner, J. Heitz

Bone-forming cells with pronounced spread into the third dimension in polymer scaffolds fabricated by two-photon polymerization
J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, T. A. Klar, B. Magnus, D. Köstner, A. Weth, W. Baumgartner and R. Marksteiner
Journal of Biomedical Materials Research Part A, March 2017, Volume 105, Issue 3 (pages 891 - 899)

Three-dimensional photonic structures on transparent substrates fabricated by two-photon polymerization for use as cell substrates and for wetting experiments
J. Heitz, C. Plamadeala, M. Wiesbauer, P. Freudenthaler, R. Wollhofen, J. Jacak, S. Puthukodan, T. A. Klar, A. Weth, W. Baumgartner, B. Magnus, R. Marksteiner: 2016 18th International Conference on Transparent Optical Networks (ICTON)

Comparison of KrF and ArF excimer laser treatment of biopolymer surface
I. Michaljanicova, P. Slepicka, J. Heitz, R.A. Barb, P. Sajdl, V. Svorcik
Applied Surface Science 339, 144–150 (2015)

VUV treatment combined with mechanical strain of stretchablepolymer foils resulting in cell alignment
R.-A. Barb, B. Magnus, S. Innerbichler, T. Greunz, M. Wiesbauer,R. Marksteiner, D. Stifter, J. Heitz
Applied Surface Science 325, 105-111 (2015)

Laser-induced periodic surface structures on polymers for formation of gold nanowires and activation of human cells
R.-A. Barb, C. Hrelescu, L. Dong, J. Heitz, J. Siegel, P. Slepicka, V. Vosmanska, V. Svorcik, B. Magnus, R. Marksteiner, M. Schernthaner, K. Groschner
Appl. Phys. A 117, 295–300 (2014)

Laser-induced periodic structures on polymers for the formation of gold or silver nanowires showing pronounced plasmon resonances
J. Heitz, R.-A. Barb, C. Hrelescu, J. Siegel, P. Slepicka, V. Vosmanska, V. Svorcik, B. Magnus, R. Marksteiner
16th International Conference on Transparent Optical Networks (ICTON) (2014), ISBN 978-1-4799-5601-2

Enhanced Ca2+ Entry and Tyrosine Phosphorylation Mediate Nanostructure-Induced Endothelial Proliferatio
M. Schernthaner, G. Leitinger, H. Wolinski, S.D. Kohlwein, B. Reisinger, R.-A. Barb, W.F. Graier, J. Heitz, K. Groschner
Journal of Nanomaterials, Volume 2013 (2013)

Preparation and characterization of fully separated gold nanowire arrays
J. Siegel, J. Heitz, A. Reznícková, V. Svorcík
Applied Surface Science 264, 443-447 (2013)

Silver nano-structures prepared by oriented evaporation on laser-patterned poly(methyl methacrylate)
J. Tuma, O. Lyutakov, I. Huttel, J. Siegel, J. Heitz, Y. Kalachyova, V. Svorcík
J Mater Sci 48, 900–905 (2013)

Nanopatterned polymer substrates promote endothelial proliferation by initiation of beta-catenin transcriptional signaling
M. Schernthaner, B. Reisinger, H. Wolinski, S.D. Kohlwein, A. Trantina-Yates, M. Fahrner, C. Romanin, H. Itani, D. Stifter, G. Leitinger,
K. Groschner, J. Heitz
Acta Biomaterialia 8, 2953-2962 (2012)

Laser Micro-structuring of Photomodified FEP Surface for Confined Growth of CHO Cells and Single Cell Isolation
S. Yakunin, M. Fahrner, B. Reisinger, H. Itani, C. Romanin, J. Heitz
J. Biomed. Mater. Res. 100B, 170 (2012)

Dynamics of the Alignment of Mammalian Cells on a Nano-Structured Polymer Surface
T. Peterbauer, S. Yakunin, J. Siegel, J. Heitz
Macromolecular Symposia 296, 272‑277 (2010)

Novel Nano- and Micro-Processing by Photo-Activation of Methylene Iodide Precursor
A. Rashid, L. Landström, K. Piglmayer
ECS Transactions, Vol. 25, 65 (2010)

Dynamics of spreading and alignment of cells cultured in vitro on a grooved polymer surface
T. Peterbauer, S. Yakunin, J. Siegel, S. Hering, M. Fahrner, C. Romanin, J. Heitz
Journal of Nanomaterials 2011, 413079 (2010)

EUV micro patterning for biocompatibility control of PET
B. Reisinger, M. Fahrner, I. Frischauf, S. Yakunin, V. Svorcik, H. Fiedorowicz, A.
Bartnik, C. Romanin, J. Heitz
Appl. Phys. A 100, 511 (2010)

Gold nano wires and nano layers at laser induced nanoripples on PET
J. Siegel, P. Slepicka, J. Heitz, Z. Kolska, P. Sajdl, V. Svorcik
Appl. Surf. Sci. 256, 2205 (2010)

Lamp-assisted CVD of carbon micro/nano-structures using metal catalysts and CH2I2 precursor
A. Rashid, L. Landström, D. Brodoceanu, K. Piglmayer
Appl.Surf.Sc. 255 (2009) 5368

Excimer-Laser Surface Processing in CH2I2 Atmospheres: Simultaneous Localized Etching of Si and Deposition of C
A. Rashid, L. Landström, K. Piglmayer
J.El.Chem.Soc. 156 (2009) D113

Microgrinding of lensed fibers by means of a scanning-probe microscope setup
S. Yakunin, J. Heitz
Appl. Opt. 48(34), 6172 (2009)

Photothermal CVD of Carbon Thin Films using CH2I2 as the Precursor
A. Rashid, L. Landström, M. Ottosson, K. Piglmayer
Chem.Vap.Depos. 14 (2008) 279

Proliferation of aligned mammalian cells on laser-nanostructured polystyrene
E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz
Biomaterials 29, 1796-1806 (2008)

Electroporation chip for adherent cells on photochemically modified polymer surfaces
M. Olbrich, I. Frischauf, E. Rebollar, C. Romanin, J. Heitz
Appl. Phys. Lett. 92, 013901 (2008)

UV-surface modification of a new nanocomposite polymer to improve cytocompatibility
M. Olbrich, G. Punshon, I. Frischauf, H. J. Salacinski, E. Rebollar, C. Romanin, A. M. Seifalian, J. Heitz
J. Biomater. Sci. Polymer Edn, Vol.18, No.4, pp. 453-468 (2007)

Simple and versatile methods for the fabrication of arrays of live mammalian cells
T. Peterbauer, J. Heitz, M. Olbrich, S. Hering
Lab Chip, 6, 857 (2006)

Modification of expanded polytetrafluoroethylene by UV irradiation in reactive and inert atmosphere.
T. Gumpenberger, J. Heitz, D. Bäuerle, T.C. Rosenmayer: Appl. Phys. A 80, 27-33 (2005)

Polytetrafluoroethylene (PTFE) films prepared by F2-laser deposition.
N. Huber, J. Heitz, D. Bäuerle: Eur. Phys. J. Appl. Phys. 29, 231-238 (2005)

Pulsed laser ablation of polytetrafluoroethylene (PTFE) at various wavelengths

N. Huber, J. Heitz, and D. Bäuerle: Eur. Phys. J. Appl. Phys. 25, 33-38 (2004)

Cell adhesion on polytetrafluoroethylene modified by UV-irradiation in an ammonia atmosphere
J. Heitz, V. Svorcik, L. Bacakova, K. Rockova, E. Ratajova, T. Gumpenberger, D. Bäuerle, B. Dvorankova, H. Kahr, I. Graz, C. Romanin: J. Biomed. Mat. Res. A 67, 130-137 (2003)

Adhesion and proliferation of human endothelial cells on photochemically modified polytetrafluoroethylene.
T. Gumpenberger, J. Heitz, D. Bäuerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, F. Leisch: Biomaterials 24, 5139-5144 (2003)