Research Seminar

Research Seminar

We kindly welcome all interested people to participate in our research seminar.
Univ.-Prof. Mag. Dr. Andreas Futschik & Univ.-Prof. Mag. Dr. Werner G. Müller

Institute of Applied Statistics

Research Seminar

Time

Thursdays from 15:30 until 17:00

Location

Science Park 2, Intermediate Storey, Z74.

Winter Term 2020/21

  1. Online-talk - January 21st - Lisa Ehrlinger & Florian Sobieczky, Software Competence Center Hagenberg: A rendezvous in data science: machine learning meets statistics

    Zoom link to the online talks

    Abstract:

    The talk covers several typical challenges from “Data Science” arising in research
    projects at the Software Competence Center Hagenberg (SCCH). Classical statistics
    as well as modern complex machine learning methods, such as neural networks, are
    applied to real-world use cases from industry.
    In the first part, a short presentation of SCCH as an institution for applied research
    is given, which is particularly interesting for students with an interest in a master or
    PhD thesis on practical problems.
    The second part is a summary of various projects involving real-world data with a
    focus on recurring statistical problems from manufacturing scenarios. In particular,
    methods related to anomaly detection, diagnosis and prediction using machine
    learning methods are discussed with some care given to the black-box stigma of typical
    modern machine learning methods. The presentation is intended to identify classical
    methods and open research questions from statistics relevant for approaches taken by
    SCCH’s strategy on predictive maintenance.
    *SCCH – Software Competence Center Hagenberg
    **FAW - Institute for Application-oriented Knowledge Processing der JKU

  2. Online-talk - January 28th - Ulrike Schneider, TU Wien

    Zoom-link to the online talks

Show More

Previous Talks

Winter Term 2020/21

  1. Online-talk - November 19th - Zsolt Lavicza & Martin Andre, Johannes Kepler University in Linz & Universität Innsbruck: Technology changing statistics education: Defining possibilities, opportunities and obligations.

    Slides of the talk

    Abstract:

    In our talk, we will online some educational research activities within the Linz School of Education related to technology developments and statistics education. Afterwards, we will discuss our work on introducing statistics concepts in schools and how statistics teaching can be connected to sustainable development with real data for students in schools. In particular, we will discuss that statistics is becoming crucial in our current data-driven society to explore numerous phenomena that are too complex to comprehend without exploring and visualising data. Citizens need to understand statistics about issues concerning essential parts of their lives such as the spread of a pandemic or climate change in order to responsibly participate in a prosperous development of our civilization. With our research projects we try to find out more about young students’ intuitive approaches to statistics when visually analysing data. We found that certain kinds of data visualisations are especially capable to provoke reasoning of statistical concepts such as ideas of centre, spread and covariation. Based on these intuitive visual approaches to statistics, another aspect of our design-based research projects is concerned with statistical modelling processes. We developed a learning trajectory where middle school students were engaged in analysing real-world data to explore sustainable development of various countries and to build a model for this phenomenon. Results show that students’ statistical investigative learning processes should feature active participation in constructing knowledge of formal statistical concepts; and students should adopt and fit their intuitive knowledge to formal concepts using methods of visual data analyses. We will outline some diverse opportunities to foster students’ intuitive understanding of statistics and sustainable development issues simultaneously.

    Zoom link to the online talks

     

  2. Online-talk - November 12th - Irene Tubikanec, Johannes Kepler University in Linz: Approximate Bayesian computation for stochastic differential equations with an invariant distribution

    Slides of the talk

    Abstract:
    Approximate Bayesian computation (ABC) has become one of the major tools of likelihood-free statistical inference in complex mathematical models. Simultaneously, stochastic differential equations (SDEs) have developed to be an established tool for modelling time-dependent, real-world phenomena with underlying random effects. When applying ABC to stochastic models, two major difficulties arise. First, the derivation of effective summary statistics and proper distances is particularly challenging, since simulations from the stochastic process under the same parameter configuration result in different trajectories. Second, exact simulation schemes to generate trajectories from the stochastic model are rarely available, requiring the derivation of suitable numerical methods for the synthetic data generation. To obtain summaries that are less sensitive to the intrinsic stochasticity of the model, we propose to build up the statistical method (e.g. the choice of the summary statistics) on the underlying structural properties of the model. Here, we focus on the existence of an invariant measure and we map the data to their estimated invariant density and invariant spectral density. Then, to ensure that these model properties are kept in the synthetic data generation, we adopt measure-preserving numerical splitting schemes. The derived property-based and measure-preserving ABC method is illustrated on the broad class of partially observed Hamiltonian type SDEs, both with simulated data and with real electroencephalography data. The derived summaries are particularly robust to the model simulation, and this fact, combined with the proposed reliable numerical scheme, yields accurate ABC inference. In contrast, the inference returned using standard numerical methods (Euler–Maruyama discretization) fails. The proposed ingredients can be incorporated into any type of ABC algorithm and directly applied to all SDEs that are characterized by an invariant distribution and for which a measure-preserving numerical method can be derived.

    Zoom link to the online talk

  3. Online-talk - November 5th - Alex Kowarik, Statistik Austria: COVID-19 Prevalence Study - Was the Sample Large Enough? 3,000 Martians, Results and More

    Abstract:
    In November, a sample survey to determine the COVID-19 prevalence will be carried out for the third time. The lecture is intended to shed light on the methodological aspects of sampling, weighting and error calculation of these surveys.

    Slides of the talk

    For login-details of this online event please contact Milan Stehlik

Show More

Summer Term 2020

  1. Online-talk - June 18th - Torsten Hothorn, University of Zurich, Switzerland: Understanding and Applying Transformation Models

    [Abstract]

    For login-details of this online event please contact Markus Hainy

Show More

Winter Term 2019/20

  1. 23. January 2020

    Peter Filzmoser, Technische Universität Wien

    Robust and sparse k-means clustering in high dimension

    [abstract]

  2. 05. December 2019

    Hao Wang, Jilin University, Changchun

    Dependence structure between Chinese Shanghai and Shenzhen stock market based on copulas and cluster analysis

    [abstract]

  3. 28. November 2019

    Haipeng Li, CAS-MPG, Shanghai

    Supervised learning for analyzing large-scale genome-wide DNA polymorphism data

    [abstract]

     

  4. 07. November 2019

    Günter Pilz, Johannes Kepler Universität Linz

    Statistik ist ein Segen für die Menschheit

    [abstract]

    [talk]

     

  5. 31. October 2019

    Martin Wolfsegger, Takeda Pharmaceutical Company Ltd.

    Some likely useful thoughts on prescription drug-use-related software support­ing personalized dosing regimen

    Alexander Bauer, Takeda Pharmaceutical Company Ltd.

    Evaluation of drug combinations

    [abstract]

     

     

  6. 10. October 2019

    Leonardo Grilli, University of Florence

    Multiple imputation and selection of predictors in multilevel models for analys­ing the relationship between student ratings and teacher beliefs and practices

    [abstract]

     

Show More

Summer Term 2019

  1. 23. May 2019
    Siegfried Hörmann, TU Graz, Austria: ANOVA for functional time series data: when there is dependence between groups

    [abstract]

     

  2. 9. May 2019
    Markus Hainy, Johannes Kepler Universität Linz: Optimal Bayesian design for models with intractable likelihoods via supervised learning
    methods

    [abstract]

     

  3. 11. April 2019
    Dominik Schrempf, Eötvös Loránd University in Budapest, Hungary: Phylogenetic incongruences - opportunities to improve the reconstruction of a dated tree of life

    [abstract]

  4. 4. April 2019
    Antony Overstall, University of Southampton, UK: Bayesian design for physical models using computer experiments

    [abstract]

  5. 14. March 2019
    Florian Frommlet, Medical University Vienna, Austria: Deep Bayesian Regression

    [abstract]

     

  6. 14. March 2019. Attention, Start: 13:45
    Thomas Petzoldt, TU Dresden, Germany: Identification of distribution components from antibiotic resistance data - Opportunities and challenges

    [abstract]

Show More

Winter Term 2018/19

  1. 17. January 2019
    Harry Haupt, Universität Passau, Germany: Modeling spatial components for complexly associated urban data

    [abstract]

     

  2. 21. November 2018 (Attention, Wednesday 15:30, S3 048)
    Hirohisa Kishino, University of Tokyo, Japan: Bridging molecular evolution and phenotypic evolution

    [abstract]

  3. 15. November 2018
    Helmut Küchenhoff, Ludwig-Maximilians-Universität München, The analysis of voter transitions in the Bavarian state election 2018 using data from different sources: a teaching research project conducted by three Bavarian universities

    [abstract]

    [Slides]

  4. 8. November 2018
    Efstathia Bura, TU Wien: Least Squares and ML Estimation Approaches of the Sufficient Reduction for Matrix Valued Predictors

    [abstract]

  5. 25. Oktober 2018
    Erindi Allaj: Volatility measurement in presence of high-frequency data

    [abstract]

  6. 11. October 2018
    David Gabauer, JKU Linz: To Be or Not to Be’ a Member of an Optimum Currency Area?

    [abstract]

Show More

Summer Term 2018

  1. 28. June 2018
    Gangaram S. Ladde, University of South Florida, USA: Energy/Lyapunov Function Method and Stochastic Mathematical Finance

    [abstract]

  2. 24. May 2018
    Pavlina Jordanova, University of Shumen, Bulgaria: On “multivariate” modifications of Cramer Lundberg risk model. 

  3. 24. May 2018
    Carsten Wiuf, University of Copenhagen, Denmark: A simple method to aggregate p-valus without a priori grouping. 

  4. 26. April 2018
    Juan M. Rodríguez-Díaz, Universidad de Salamanca, Spanien: Design optimality in multiresponse models with double covariance structure. 

  5. 19. April 2018
    Robert Breitenecker, Johannes Kepler University Linz: Spatial Heterogeneity in Entrepreneurship Research: An application of Geographically Weighted Regression

  6. 15. March 2018
    Andreas Mayr, Friedrich-Alexander-University Erlangen-Nürnberg, Germany: An introduction to boosting distributional regression

Show More

Winter Term 2017/18

  1. 25. January 2018
    Thomas Kneib, Georg-August-Universität Göttingen: A Lego System for Building Structured Additive Distributional Regression Models with Tensor Product Interactions

  2. 9. November 2017
    Henrique Teotonio, Institut de Biologie de l'École Normale Supérieure, Paris: Inferring natural selection and genetic drift in evolution experiments

  3. 7. December 2017
    Franz König, Medizinische Universität Wien: Optimal rejection regions for multi-arm clinical trials

    [abstract]

  4. 19. October 2017
    Lenka Filová, Comenius University in Bratislava: Optimal Design of Experiments in R

  5. 12. October 2017
    Elisa Perrone, Massachusetts Institute of Technology, Cambridge, MA (USA): Discrete copulas for weather forecasting: theoretical and practical aspects

    [abstract]

Show More