close

Visual Analytics

Lecturer: Marc Streit

Introduction

Visual Analytics (VA) can be defined as the science of analytical reasoning supported by interactive visual interfaces [1]. VA is highly interdisciplinary and combines fields such as data mining, data management, visualization as well as human perception and cognition. In this course students will learn how large and complex data, such as tables, networks, and text, can be effectively explored and analyzed using interactive means.

In addition to the lecture, students can take an optional lab where they learn how to apply Visual Analytics skills to solve real-world visual data analysis problems.

Contents

In particular, this course will discuss the following topics:

  • Introduction to Visual Analytics: Definition, VA Process, History
  • Data Foundations and Management
  • Visualization Principles I: Statistical Plots
  • Visualization Principles II: Visualization Techniques by Data Type
  • Visual Data Mining Principles
  • Human-Interpretable Machine Learning
  • VA Infrastructure: Libraries and Tools
  • Evaluation: Quantitative & Qualitative Methods
  • Reproducibility and Provenance
  • Collaborative Visualization and Data-Driven Storytelling
  • Selected Current Research and Case Studies

Selected Readings

  1. Visualization Analysis and Design; Tamara Munzner; Taylor & Francis Inc., ISBN: 978-1466508910, 2014.
  2. Mastering the Information Age - Solving Problems with Visual Analytics, Daniel A. Keim, Jörn Kohlhammer, Geoffrey Ellis and Florian Mansmann, Eurographics Association, ISBN-13: 978-3-905673777, 2010. Free Download.
  3. Making Data Visual: A Practical Guide to Using Visualization for Insight, Danyel Fisher and Miriah Meyer, ISBN: 978-1491928462, 2018.
  4. Doing Data Science: Straight Talk from the Frontline, Cathy O'Neil and Rachel Schutt, 978-1449358655, 2013.
  5. Illuminating the Path: The Research and Development Agenda for Visual Analytics, James J. Thomas and Kristin A. Cook, National Visualization and Analytics Ctr, ISBN-13: 978-0769523231, 2005.
  6. Interactive Data Visualization: Foundations, Techniques, and Applications; Matthew Ward, George Grinstein and Daniel Keim, A K Peters, ISBN: 978-1568814735, 2010.