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A model-based measurement device in

European fiscal policy-making: The ontology

and epistemology of potential output

Philipp Heimberger∗and Jakob Kapeller†

Abstract

While the development of scientific theories and measurement concepts has always been
strongly intertwined, model-based measurements, specified as parameters in a statistical
model, have been receiving increasing attention over the last decades. In this paper, we
analyze the ontological and epistemological characteristics of such a model-based measure-
ment device in an economics context. Specifically, our analysis focuses on the European
Commission’s model for estimating ’potential output’ and ’natural unemployment’, which is
employed to facilitate the coordination of fiscal policies across the European Union. We find
that the model’s estimates strongly reflect the ontological and epistemological preconcep-
tions underlying its design. Thereby, we point to a series of decisive di↵erences in the realms
of engineering and economics when it comes to the actual implementation of measurement
techniques as well as the application and interpretation of measurement outcomes.

Keywords: measurement theory, model-based measurement, economic models, economic pol-
icy, Kalman filter, European Union.

1 Introduction

Although science clearly goes beyond pure measurement, it is quite evident that the history of
science is closely intertwined with the development of measurement systems and devices dedi-
cated to assessing empirical objects as well as to mediating between theory and the properties of
these objects (Bunge, 1967, 207). In particular, the evolution of the natural sciences has been
closely associated with the development of ever more precise and varied devices of measure-
ment, which provide a series of examples for the mutual enrichment of theory and observation.
The clearest and most-thoroughly researched case is probably that of temperature, which was a
prime example for an immeasurable ”quality” in the works of Aristotle (2009, Part 10) and has
successively been quantitatively ”invented” in the course of centuries of research (Chang, 2004).
While the invention and design of most measurement devices is guided by theoretical conjec-
tures of very di↵erent degrees of sophistication, they are typically associated with some practical
dimension in the form of an intended application. Generally speaking, measurement devices
serve to map some properties of objects onto numerical scales. They can do so in di↵erent ways,
e.g. by directly measuring properties (the length of a rod), by indirectly calculating some value
based on given conceptual definitions (miles/hour), or by exploiting some theoretical mechanism
(quicksilver in a thermometer) or statistical correlation (test for personality characteristics in
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psychology) to derive numerical data. Over the last few decades, these more classical routines
have been complemented by model-based approaches to measuring, where the measured quanti-
ties are parameters in a theoretical or statistical model (e.g. Tal, 2015; Hoover, 2015; Tal, 2016).
In this view, models serve as a mode for translating ’instrument indications’ in the sense of raw
data points into ’measurement outcomes’, i.e. actual knowledge claims. Thereby, proponents
of such a model-based perspective on measurement emphasize that ”inferences from instrument
indications to measurement outcomes are non-trivial and depend on a host of theoretical and
statistical assumptions about the object being measured, the instrument, the environment and
the calibration process” (Tal, 2015, 13).
Given this context, this paper is concerned with a specific and prominent variant of such a

model-based measurement device, namely the in-house model of the European Commission
(EC) for estimating ’potential output’ (Havik et al., 2014; Planas and Rossi, 2015). This
model is employed on a pan-European level to facilitate the coordination of national fiscal
policies in accordance with the EU’s fiscal regulation framework. Thereby, it contributes to the
development of economic policy as well as public discourse within and beyond Europe. As this
model is guided by current economic theory, incorporates state-of-the-art technical concepts
and is constructed for a specific – and essential – practical purpose in the field of European
politics, it constitutes a prime case for assessing and understanding the role of model-based
measurement in a social science context.
In this paper, we show that the core idea of the model under study is one of model-based

measurement aiming for an empirical di↵erentiation between ’structural’ and ’cyclical’ compo-
nents in economic development to obtain a measure for the theoretically postulated concept of
’potential output’. As theory provides only implicit guidance, statistical technique – ordinarily
used for aggregating and not for acquiring observations – eventually gains a prime role when
obtaining quasi-observational data on the interrelated concepts of ’natural unemployment’, ’po-
tential output’ and ’structural deficits’. Hence, this paper is dedicated to exploring the basic
idea and actual implementation of the potential output model as well as the ”host of theoretical
and statistical assumptions” surrounding this implementation.
This study proceeds as follows: in section 2, we provide a short introduction to the inner

workings and the political implementation of the potential output model to explain the nec-
essary economic foundations and its context. In turn, section 3 inspects the model’s implicit
assumptions on the nature and ontology of business cycles and contextualizes basic, but con-
tested, preconceptions on macroeconomic issues inherent in this measurement device. Section
4 takes a look at the heart of the EC’s potential output model by discussing the role of Kalman
Filter techniques in the provision of quasi-observational data on business cycles. In doing so,
it employs a comparative approach by contrasting the use of the Kalman Filter in the poten-
tial output model with its intended and established applications in engineering to allow for a
better assessment of the adequacy and suitability of this intellectual transfer into a macroeco-
nomic model. Drawing on this assessment, section 5 turns to showing how the explanation of
’structural’ factors within the potential output model fundamentally di↵ers from the political
recipes drawn from the very same model, thereby pointing to a severe gap between theoretical
explanation and technological advice. Section 7 concludes the paper.

2 The potential output model: basic structure and political

implementation in the EU

In assessing the sustainability of public finances in EU member countries, the EU’s fiscal regula-
tion framework relies heavily on measures of the so-called ’structural budget balance’. Since its
reforms in 2005 and 2011, the Stability and Growth Pact (SGP) has made use of the structural
balance as the most important control indicator for medium-term fiscal conduct. Furthermore,
rules in the Fiscal Compact set deficit limits in terms of the structural balance (ECFIN, 2013).
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The size of the structural balance directly depends on estimations derived from the EC’s
potential output model (e.g. Klär, 2013; Tereanu et al., 2014; Heimberger and Kapeller, 2016),
which is used as a scientific measurement device for computing the position of an economy in the
business cycle. In this context, potential output is understood as the maximal level of output
and employment at which inflation remains constant; hence, if an economy actually attained
its potential output, it would exhibit a neutral position vis--vis the business cycle – neither
overheated nor underutilized –, where ’neutrality’ is defined with respect to inflation.
The structural balance translates the estimates obtained from the potential output model

into the political sphere, as it is used to correct the headline fiscal balance for the e↵ects of the
business cycle on government revenues and spending to arrive at the so-called cyclically-adjusted
budget balance. The economic reasoning for this adjustment is that cyclical fluctuations auto-
matically have an e↵ect on the fiscal balance as government revenues typically decline during a
recession, while unemployment-related government spending increases. Hence, the fiscal balance
deteriorates automatically during an economic downswing. Vice versa, the headline balance im-
proves during an upswing, as revenues increase and unemployment-related spending falls. The
cyclically-adjusted budget balance is supposed to exclude such automatic stabilization e↵ects
on the budget balance (e.g. Carnot and deCastro, 2015). In a second calculation step, the
EC subtracts politically-negotiated budgetary one-o↵ e↵ects (e.g. costs related to bailing-out
financial institutions) from the cyclically-adjusted balance.

Figure 1: The basic components of the potential output model

cyclically-adjusted balance  
(official data adjusted by experts’ calculations)

one-off effects  
(negotiated by politicians)

structural balance

Kalman-filtered Solow residual 
(smoothing residuals)

potential output

labor input

HP-filtered variables 
(smoothing labor inputs)

Kalman-filtered unemployment rate
(measuring ‘natural unemployment‘ in form of the NAWRU)

The first equation from Figure 1 summarizes the computations that need to be made to
arrive at the structural balance. In this formula, SBt denotes the structural balance, FBt is
the headline fiscal balance of individual EU countries, ✏t (’semi-elasticity parameter’) captures
how strongly the fiscal balance reacts to the output gap, and OGt is the output gap, given by
the di↵erence between Gross Domestic Product (GDP, at constant prices) and potential output
expressed in percent of potential output. Finally, OEt are one-o↵ and temporary e↵ects on
the fiscal balance (Mourre et al., 2014). The cyclically-adjusted budget balance results from
subtracting the term ✏t OGt from FBt.
Hence, the potential output model comes into play to estimate the output gap OGt (see

Figure 1), i.e. to assess whether an economy is overheated (resulting in a positive output gap),
underutilized (negative output gap) or running at potential output (output gap of zero). To
calculate estimates for potential output according to the second formula in Figure 1, the EC
employs a Cobb-Douglas production function, the reference model in the neoclassical growth
literature (Cobb and Douglas, 1928; Solow, 1957; Barro and Sala-i Martin, 2003), to obtain
estimates of the theoretically postulated concept of unobservable potential output POt (Havik
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et al., 2014). The upper-left panel in Figure 2 illustrates model-based potential output measure-
ment for the case of Spain. It can be seen that in the run-up to the financial crisis of 2008/2009,
actual GDP is estimated to have stood above potential output, implying a positive output gap
and an overheating Spanish economy. Since the start of the crisis, however, actual GDP has
been measured to stand below the EC’s potential output estimates, where the resulting negative
output gap indicates underutilization of economic resources.
The model is best understood as a calculatory vehicle for processing empirical data, where

the factor inputs labor (Lt) and capital (Kt) are transformed into output, and where total factor
productivity TFPt is a residual1 interpreted as a proxy for technological progress.2 Estimates
for the capital stock Kt are taken from the EC’s AMECO database. TFPt is first calculated
as average output per hours worked, then corrected for ’cyclical’ deviations by a Kalman-Filter
and then again put into the model as a measure for cyclically-adjusted technical progress. (See
the lower-right panel in Figure 2 for a visualization of the EC’s TFP estimates in the case of
Spain.) The calculation of the production factor labor is more involved, as it tries to express the
hypothetical number of total hours worked in the absence of any cyclical influence. As shown
by the third equation in Figure 1, labor is operationalized as a filtered trend of total working
hours (HOURSTt) o↵ered by the active trend labor force (POPWt*PARTSt)3 in a case where
a ’natural rate’ of unemployment (NAWRUt) prevails.

Figure 2: The case of Spain
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The EC defines ’natural unemployment’ as the unobservable non-accelerating wage inflation

1Residual in this context means: the part of potential output growth that cannot be explained by labor and
capital.

2In the interpretation of Havik et al. (2014), ↵ and (1 - ↵) are understood as the constant output elasticities of
labor and capital, respectively – which represents by how many percentage points output changes when the
respective input is increased by one percentage point (Havik et al., 2014, 10).

3Both the labor force participation rate (PARTSt) and the trend of total working hours (HOURSTt) are de-
trended by employing a Hodrick-Prescott filter, which is a mechanical, univariate approach to separating the
cyclical component of a time series from the trend (Hodrick and Prescott, 1997). See Kaiser and Maravall
(2001) for a discussion on the basic limitations of the HP filter. See the lower-left panel of Figure 2 for
HP-filtered values of PARTS in the case of Spain.
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rate of unemployment (NAWRU) – a measure of ’structural unemployment’; i.e., unemployment
caused by market rigidities rather than cyclical fluctuations (Friedman, 1968; Phelps, 1967).4

In the rest of this paper, we follow this definition and analyze the ontology, epistemology and
application of the NAWRU model on which measurements of ’natural unemployment’ are based.
There are three main reasons for this focus. First, the EC explicitly defines potential output
as the level of output consistent with non-accelerating inflation, so that the NAWRU is central
to the whole conceptual measurement framework (Havik et al., 2014; European Commission,
2014). Second, the EC uses estimates of the NAWRU as indicators of ’structural unemployment’,
which serve as an empirical basis for policy suggestions on how to lower ’natural unemployment’
and how to increase potential output (Orlandi, 2012; see section 5). Third, as can be seen
from the upper-right panel in Figure 2 for the case of Spain, the EC’s model-based NAWRU
measurements exhibit a falling trend when the unemployment rate decreases, while they are
estimated to increase as unemployment shoots up (which has been the case after the financial
crisis of 2008/2009; see Klär (2013) and Heimberger and Kapeller (2016)). These first takeaways
on the EC’s o�cial measurements for Spain raise the question on how the model’s theoretical
foundations interact with the estimation approach chosen by the EC to smooth the actual
unemployment rate and arrive at the final model estimates.
In the EC’s NAWRU model, unemployment is split into two components: ’cycle’ and ’trend’,

where the trend component is equal to the NAWRU (Planas and Rossi, 2015). The model is cast
into state space form, which is basically a model representation in matrix notation (e.g. Harvey,
1990; Grewal and Andrews, 2015). The state space variant of the EC’s NAWRU model is shown
in equations 1 and 2, whose single equations will be analyzed in sections 3 and 4. Crucially,
finding an answer to the question ”Which part of the unemployment rate is ’cyclical’ and which
part ’structural’?” is passed to the statistical de-trending of the respective time-series. In this
context, the de-trending process is based on a Kalman-filter approach (Kalman, 1960; Durbin
and Koopman, 2012). The Kalman-Filter builds on a recursive procedure, which updates its
predictions whenever new empirical information on unemployment (and labor cost inflation)
becomes available (see section 4).


ut

�rulct

�
=


1 0 1 0
0 0 �1 �2

�
2

664

Nt

⌘t
Gt

Gt�1

3

775+


0

V rulc
t

�
(1)

2

664

Nt+1

⌘t+1

Gt+1

Gt

3

775 =

2

664

1 1 0 0
0 1 0 0
0 0 �1 �2

0 0 1 0

3

775

2

664

Nt

⌘t
Gt

Gt�1

3

775+

2

664

V N
t

V ⌘
t

V G
t

0

3

775 (2)

While the specific matrix notation of the NAWRU model depicted in equations 1 and 2 is
ready-made for the processing of the Kalman-filter recursions that are employed to de-trend the
unemployment rate (Planas and Rossi, 2015), this state space form has the additional advantage
of providing a concise explication of the most important theoretical and statistical assumptions
inherent in the measurement of ’natural unemployment’.5 In the subsequent chapter, we will

4Stockhammer (2008) shows that the Friedman-type (Monetarist) interpretation for the existence of an un-
employment rate at which inflation does not accelerate (NAIRU) can be substituted by Post-Keynesian or
Marxist arguments. The formal models that result from varying Monetarist, Post-Keynesian and Marxian
rationales for the NAIRU di↵er only slightly.

5The state space form in equations 1 and 2 depicts what the Commission calls the ’New Keynesian’ NAIRU
model, which – as of November 2015 – has been in use for all EU countries but Austria, Belgium, Germany,
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detail our arguments by pointing to essential parts of the NAWRU model setup and explore
their meaning and purpose in greater detail. In addition, section 4 will then turn to the epis-
temological foundations of using a Kalman filter approach to de-trending empirical data inputs
into a model by comparing the filter technique’s usual field of application (engineering) with
the usage in case of the EC’s NAWRU model.

3 The ontology of potential output: Cycle vs. trend

As already emphasized, a closer inspection of equations 1 and 2 allows for assessing the un-
derlying assumptions of the potential output model. In a first step, we want to illuminate the
model’s ontology by discussing the representation of its core variable – unemployment – and the
conceptual commitments underlying its decomposition. The three relevant equations, which can
be obtained by applying the rules of matrix multiplication to equations 1 and 2, are reproduced
below.

ut = Nt +Gt (3)

�Nt = ⌘t�2 + V ⌘
t + V N

t = ⌘t�1 + V N
t (4)

Gt = �1Gt�1 + �2Gt�2 + V G
t (5)

Equation 3 summarizes the core assumption on unemployment (ut), namely that the latter is
composed out of a ’natural’ (Nt) or ’structural’ part as well as some kind of cyclical ’gap’ (Gt).
Equation 4 and equation 5, in turn, tell us how these two components are conceptualized in the
model. Specifically, natural unemployment (Nt) is understood as the main force of economic
development as it is mainly characterized by a trend-component (⌘t), which represents the
basic trajectory of a given economy in terms of employment (both, Nt and ⌘t, are also subject
to white noise terms, V N

t and V ⌘
t ). Cyclical unemployment, on the other hand, is explicitly

understood as a conceptual ’gap’ between theoretically predicted and actually observed values.
This interpretation is especially evident as the first equation actually equates empirically given
data (ut) with natural unemployment and the cyclical gap, without the addition of further
error terms. Keeping in mind that in economic practice ”residuals could be a composite of
shocks (omitted causes + fundamental indeterminism) and (measurement + specification) error”
(Hoover, 2015, 3521), the cyclical ’gap’ Gt could also be interpreted as a more inclusive catch-all
variable covering all types of theoretical and statistical errors.
However, even in this more flexible view, cyclical unemployment is treated in analogy to

statistical noise, as a possibly complex, but eventually analytically unimportant collection of
details, which is technically rationalized in equation 5 as a second-order autoregressive process.
The basic setup of core variables, therefore, incorporates an ontological commitment: namely
that ’natural’ or ’structural’ unemployment is the real driving force in the economy and, hence,
theoretically more autonomous than cyclical unemployment – pointing to an ontological pri-
ority of the trend over the cycle. Although such reasoning is well in line with the standard
readings of the ’natural rate of unemployment’ or the NAWRU in the economic literature (e.g.
Friedman, 1968; Ball and Mankiw, 2002), it is notable that the exact specification of natural
unemployment in the model under study is only based on a heuristic. It is roughly inspired by
the underlying theory, but does nowhere make explicit reference to the actual theoretical deter-
minants of unemployment – the structural features or ’rigidity’ of labor markets (e.g. European
Commission, 2014) – but rather posits a parameter to statistically measure the outcome of the

Italy, Luxembourg, Malta, Netherlands. For these 7 countries, the Commission is still using the ’Traditional
Keynesian’ NAIRU model (European Commission, 2014, 22).
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postulated mechanism.
Eventually, this arrangement asserts that the business cycle is not a systematic economic

phenomenon, but rather a form of statistical noise surrounding the ’true development path’ of
the economy, which is to be captured by the trend-component as modeled according equation 4.
This separation follows the standard economic ”ontology that partitions economic processes into
a deterministic structure and indeterministic shocks” (Hoover, 2015, 3532). Heuristically, it is
given by the conjoined ideas of (a) a basic and undiminishing growth rate driven by technological
progress (rationalized via the Kalman-filtered TFPt), (b) a ’natural level’ of (un)employment
largely determined by labor market regulations (Nt and its trend component ⌘t) and (c) period-
ical fluctuations of employment (the cyclical gap Gt), which are best understood as statistical
noise of a specific type. Thereby, the parts (a) and (b) form the ”deterministic structure”, while
(c) collects the ”indeterministic shocks” mentioned.
While the focus on the estimation of the NAWRU as a measure of natural unemployment

is useful for analyzing the ontological presumptions regarding the basic features of economic
development, it has also been made clear that the estimates for potential output are best
understood as ’composite measures’. They are based on a series of statistical treatments applied
to the relevant raw data to finally obtain a measure for potential output. In the model under
study, a Cobb-Douglas production function (second equation in Figure 1) is used to tie together
these di↵erent composites, which either stem directly from raw data or come in the form of
Hodrick-Prescott- or Kalman-filtered time-series.
Following the usual practices (see Bunge (1996, 363-364) and Sugden (2000, 13)), this specific

production function is mostly chosen for reasons of computational convenience (Havik et al.,
2014, 10). Nonetheless, it does come with a set of ontological presumptions: it not only de-
fines labor, capital and technology as relevant inputs for determining aggregate output, but
also assumes that the former two factors are mutually dependent, symmetric factors of pro-
duction. This arrangement stands in contrast to the more classical position of viewing labor
as autonomous and capital as solely labor-augmenting (Clark, 1899). Finally, the empirical
application of the Cobb-Douglas production function requires an estimate for the parameter ↵.
It can be shown that estimates for ↵ and (1-↵) do not represent the constant output elasticities
of labor and capital, respectively. Instead, they typically measure the wage and profit share, i.e.
the share of national income received by the corresponding factors of production (e.g. Felipe and
McCombie, 2014). By using these estimates for computing the contribution of the production
factors to final output, one e↵ectively posits an environment of fully competitive markets to
assure equivalence between cost and contribution of production factors. This aspect comple-
ments the ontology of the model, which is based on the idea that constant technological growth
embedded in highly competitive markets implies steady economic progress, which is sometimes
constrained by regulation (natural unemployment) and random deviations (the cyclical gap).
As a further remark, our discussion of the ontology of the potential output model has also

made clear that the model does not build on a methodological individualism as typically es-
poused in economics textbooks. This observation is true for many macroeconomic models and
is sometimes rationalized by viewing macroeconomics as supervening on microeconomics (e.g.
Hoover, 2001, Chapter 5), while in other contexts it is criticized as not following the state-of-
the-art of economic thought, i.e. ’micro-foundations’ of macroeconomic relationships (Lucas,
1976). As a response, many aggregate models posit an underlying representative household (a
single household representing all households in an economy) to provide their macroeconomic
account with an individualist appealing (Kirman, 1992). This feature also holds true for the
model under study: while the o�cial description does not explicitly introduce individual behav-
ior, it is argued that the Phillips-curve relationship employed for modeling the NAWRU can, in
principle, be derived from a representative household setup (Havik et al., 2014, 16).
While the EC’s approach to measuring NAWRU and potential output builds on the notions a)

that trend and cycle are distinct phenomena, b) that both components can be neatly separated
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by means of statistical technique, and c) that the ’trend’ captures the essence of an economy’s
equilibrium development path, the economic literature includes challenges to all three aspects.
Regarding notion a), Richard Goodwin has prominently argued that cycle and trend are in-
dissolubly fused (Goodwin, 1967, 1982), i.e. they cannot be regarded as separate phenomena,
because the factors bringing them about are not independent from each other (Harcourt, 2015).
Regarding notion b), the relevant statistical filtering literature raises doubts about whether
trend and cycle can be accurately separated by means of statistical filtering. In the recursive
Kalman-filtering process for estimating the NAWRU (see section 4), the model’s predictions
are updated whenever a new data point is made available. Hence, the most recent observations
play a crucial role in determining the trend. In fact, the last data points of the time series
that are to be filtered typically have a disproportionate impact on measures of the trend. This
phenomenon – called the ’end-point bias’ (e.g. Kaiser and Maravall, 2001; Ekinci et al., 2013) –
implies marked revisions in de-trended estimates when new data is brought into the model-based
measurement process, especially when the new data points derive from times of macroeconomic
distress (Havik et al., 2014; Palumbo, 2015).6 Finally, regarding notion c), the theoretical work
of prominent economists suggests that the business cycle is not only to be studied as a system-
atic economic phenomenon instead of as mere statistical noise. Rather, a profound theoretical
understanding of a cycle is of the essence for determining the evolution of output and em-
ployment. In this view, relevant ’trends’ are always of a genuine cyclical character and driven
by the boom-bust-promoting behavior of actors in financial markets (Minsky, 1982) or by the
innovation-based ’creative destruction’ within existing economic structures (Schumpeter, 1942).
According to the EC’s ontology of potential output, the trend is governed by the economy’s

drive towards macroeconomic equilibrium, as the unemployment gap represents a mere tem-
porary deviation from this equilibrium. In the model framework, the assumption that the
unemployment gap follows an autoregressive process ensures that, eventually, the unemploy-
ment rate will always converge to the natural rate of unemployment. Thereby, ”specifying the
unemployment gap as a process that reverts to a zero mean [...] seems to capture Friedman’s
(1968) view that the unemployment rate cannot be kept away indefinitely from the natural rate
[of unemployment]” (Laubach, 2001, 221). From a critical macroeconomic perspective, however,
the notion of a leveling-out of the noise around the steady trend path is rejected on the grounds
that neither does the trend have a life separate from the cycle (e.g. Goodwin, 1982; Minsky,
1982; Schumpeter, 1942) nor do highly competitive, unregulated markets automatically make
the economy convergence to ’equilibrium unemployment’, i.e. to the NAWRU (e.g. Galbraith,
1997; Sawyer, 2001). Instead, one has to account for short- and medium-term fluctuations,
which may create endogenous instability – a view that is implicitly denied by the EC’s ontology
of potential output, which builds on the notion of a stable, long-term growth trend, surrounded
by temporary cyclical fluctuations, where the gap is modeled as noise and always reverts to a
zero mean, thereby ensuring convergence towards ’equilibrium’.
A final crucial ontological aspect is that the EC models potential output as being determined

by the supply side of an economy (Havik et al., 2014). While demand may a↵ect the level
of economic activity both in the short-run and in the long-run so that the course of demand
impacts on the path of supply (Sawyer, 2011), the EC models potential output in a way so that
changes in investment and consumption (i.e., on the demand side) are deemed non-essential
to understanding the trend evolution of output and employment. Hence, the possibility that
inadequate aggregate demand might cause persistent underutilization of economic resources in
the aftermath of a severe crisis such as the Great Depression (Keynes, 1936) or the financial
crisis of 2008/2009 (e.g. Krugman, 2012) is simply not part of the EC’s ontological framework.

6The end-point problem results in a pro-cyclical measurement bias: NAWRU estimates tend to be revised
downwards during an economic upswing and to be revised upwards in a downswing (Klär, 2013; Heimberger
and Kapeller, 2016).
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4 The epistemology of potential output: The role of the Kalman

Filter in engineering and macroeconomics

Until this point, it has become clear that the NAWRU – as a specific, model-based measurement
of ’natural unemployment’ – serves as a central pillar of the EC’s potential output model.
Thereby, the underlying separation of actual unemployment into a trend-part (the NAWRU)
and a purely cyclical part (the gap) is based on a statistical procedure – a Kalman-Filter –, but is
nonetheless given a theoretical embedding as NAWRU estimates are interpreted as indicators for
’natural’ or ’structural unemployment’ (Orlandi, 2012; European Commission, 2014). Hence,
the underlying idea is to measure a theoretically postulated, but practically non-observable
variable – ’natural unemployment’ as determined by structural labor market characteristics –
by means of a statistical filtering technique. Taking this basic setup into account, it becomes
obvious that the epistemological adequacy of the EC’s model strongly depends on the accuracy
and suitability of the Kalman-Filter as a measurement device for ’natural unemployment’.
Hence, this section provides a short overview on the origins, usage and practical properties of
Kalman-Filtering. In this context, we pose the question whether the underlying conceptual
transfer from control theory to macroeconomics is convincing and epistemologically adequate.
The Kalman-Filter is a recursive statistical technique originally developed for purposes in

engineering (Kalman, 1960), with particular importance for fields like navigation, (automated)
guidance and spacecraft engineering. It has become ”a standard approach in signal processing
and control theory” (Eichstädt et al., 2016, 2), aiming for the fusion of di↵erent streams of
signals or data to arrive at a single, more precise metric for measuring the position or properties
of some object. Against this background, it comes as no surprise that the discipline of data-
fusion in general and the Kalman Filter in particular ”owes much to people working in defence,
particularly in target tracking and identification” (Girao et al., 2009, 220). The basic purpose of
using the Kalman-Filter in its typical engineering contexts can be summarized as the refinement
of noisy empirical measurements (delivered, e.g., by optical sensors or a GPS-signal) and slightly
inexact theoretical predictions to arrive at more precise and exact estimates of the true values
of interest. To provide such a refinement, the Kalman Filter makes use of a state-space model
describing the dynamics of a given system based on known control inputs (e.g. driving speed),
established law-like relationships (e.g. Newton’s laws of motion) and empirical observations
taken from some inaccurate measurement device (e.g. a car’s GPS-tracker). Kalman filters can
be found in satellite navigation devices, in smart phones, computer games etc. (e.g. Grewal
and Andrews, 2010; Girao et al., 2009). The filter always builds on a recursive algorithm to
incorporate new data points and provides real-time updates of estimates about a system’s state
as new data enters the recursive processing.
To the best of our knowledge, economics is the only discipline outside the natural and technical

sciences, which has adopted the Kalman Filter, by integrating it into its technical portfolio as
a technique for the de-trending of time-series (Harvey, 1990; Durbin and Koopman, 2012).
Having said that, we may notice a first conceptual di↵erence between the use of the Kalman
Filter in its original context and its use in economics. In engineering, the Kalman Filter is
mainly understood as a rather practical tool employed to increase the precision and reliability of
technical applications designed on the basis of already well-corroborated theories by aggregating
di↵erent measures. In economics, on the other hand, the very same technique is used as a
genuine measurement device to make sense of existing theories by providing estimates for a
hitherto unobservable variable: ’natural’ or ’structural’ unemployment.
In what follows, we further analyze the tacit assumptions and implications of this conceptual

framework. In doing so, we start by providing a short explanation of the Kalman Filter’s
basics, continue with illustrating the filter’s workings with an example from classical mechanics,
and then exlore the Kalman Filter model as advanced by the EC to provide a more accurate
comparison of the use of Kalman Filtering across the two di↵erent disciplinary contexts.
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4.1 Basics of state space models and the Kalman Filter

In state space modeling, the development of the system that is to be modeled is determined
by an observation equation and a state equation, where the latter describes the core system
dynamics, while the former maps these dynamics onto the level of measurements. A system
composed of these two equations already ”exhibits the basic characteristic structure of state
space models in which there is a series of unobserved values ↵1, ...., ↵m which represents the
development over time of the system under study, together with a set of observations y1, ...,
yn which are related to the ↵t’s by the state space model” (Durbin and Koopman, 2012, 12).
Hence, the state equation, explicated below in a general form, is the conceptual heart of a state
space model as it contains the model’s fundamental theoretical and/or statistical assumptions.

↵t+1 = Tt↵t +Btut +Rt⌘t

⌘t ⇠ (0, Qt)

t = 1, ..., n

(6)

Here, ↵t is an unobserved state vector, which contains ”unobserved values” for describing
the ”development” of a given system (e.g. the position of an object and its velocity in the
case of GPS tracking; or the ’natural rate of unemployment’ in the case of the EC’s NAWRU
model). The unobserved state in this model is a↵ected by three components, where Tt is the
’transition matrix’, which relates the state ↵t at the previous time step (t-1) to the state at the
current step (t), Bt is the ’control input matrix’, which maps known exogenous control inputs
ut (like gravitational force in case of a falling object) on the state vector ↵t, and Rt is a vector
of white noise shocks with covariance matrix Qt, called the ’process noise covariance matrix ’
(see Durbin and Koopman (2012, 43)). Intuitively, the process noise captures the idea that in
practical applications theoretical predictions are often slightly inexact as the underlying models
do not incorporate all relevant variables, but mostly ignore those with minor influence (e.g. the
impact of weather conditions on the exact trajectory of a car). As the elements of the state
vector t are sometimes unobservable in the sense that they cannot be directly confronted with
empirical data, the state equation is complemented by an observation equation, which relates
the postulated system’s dynamics (↵t) to some series of observations collected in the observation
vector yt.

yt = Zt↵t + ✏t

✏t ⇠ (0, Ht)
(7)

Here, Zt is a matrix, which relates the state t to the observation yt , i.e. it maps the pa-
rameters of the state vector into the observation domain, while ✏ t is a vector of shocks with
covariance matrix Ht, called the ’measurement covariance matrix’. Basically, the measurement
noise indicates that the empirical data brought into the filtering process is inaccurate and noisy.
The process noise from the state equation and the measurement noise from the observation
equation are both assumed to follow normal probability distributions (i.e. zero mean Gaus-
sian white noise) and to be independent of each other. They can be interpreted as separate
statements on the imprecision of theory (process noise) and measurement device (measurement
noise).
The Kalman Filter is now a recursive application of a state space model as described here,

which is designed ”to update our knowledge of the system each time a new observation yt is
brought in” (Durbin and Koopman, 2012, 11). While the primary aim of the Kalman recur-
sions is to find the ”best estimate” of the state variable(s) of interest given noisy measurement
feedback, its main routine is to assess the relative performance of the underlying theoretical or
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statistical model vis-a-vis past empirical measurements when predicting the next set of data
points. This relative importance is expressed in a separate variable – the Kalman gain Kt –
which assigns weights to model and past data, based on the amount of error they introduce into
the actual predictions. Specifically, the Kalman-Filter assumes that the state ↵ is distributed
according to N(a, P), where the mean a represents the ’filtered estimator’ of the state ↵ and
P its variance (Durbin and Koopman, 2012, 11). Intuitively, if the state variance of ↵ (P)
is high relative to the measurement error, the underlying model is less trustworthy than the
measurements, and vice versa. More formally, this intuition is explicated in the Kalman filter
recursions depicted in Figure 3.

Figure 3: Kalman filter recursions

Time update (predict) Measurement update (correct)

Initial estimates for and

As shown by the time update equations in Figure 3, the filter recursions start with projecting
estimates for the next time step of the dynamic process (”time update”). These predicted
measurements are then compared to the data that is brought in (”measurement update”), and
the resulting di↵erence between predicted and observed measurement is adjusted in accordance
with the Kalman Gain (Kt) to deliver improved a posteriori estimates of the system’s state (at|t)
and error covariance (Pt|t) as well as predictions for the next time step.
Generally, if the assumption that all noise is Gaussian were true, the Kalman filter would

be an optimal estimator as it minimizes the mean square error of the parameters that are
inferred from the noisy observations. The noise modeling is an essential part of the Kalman
filter design, as the performance of the system – made up by state equation and measurement
equation – is largely determined by setting the noise terms (e.g. Harvey, 1990). In many applica-
tions, especially in econometrics, error variances and parameter values in the transition matrix
and observation matrix are typically unknown, but rather have to be estimated by numerical
Maximum-Likelihood-procedures (Durbin and Koopman, 2012, 170–189). Other complications
can arise in the context of calibrating and initializing the filter, i.e. finding appropriate initial
values for a and P.

4.2 The example of a falling object

In this subsection, we provide a short introduction to the application of the Kalman filter in
Newtonian mechanics to illustrate the typical properties of said Filter as used in engineering.
In this example, we investigate the case of a falling object and we are interested in the object’s
position and velocity. These two variables make up the state vector, which cannot be observed
directly but only by means of imprecise measurement. The employed theoretical model is guided
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by Newtonian physics and has the following basic form, describing the change in position (x)
and speed (v) of our falling object, where the latter is influenced by gravity (g) as well as
frictional force (k/m):

xt+1 = xt + vt�t

vt+1 = vt(1� ((k/m)�t)� g�t
(8)

The basic goal of the filtering process is to provide a more accurate description of the object’s
properties than theory or measurements in isolation could provide. Theoretical predictions may
be imprecise or even erroneous due to unconsidered forces (drift), while measurements are noisy
by definition in this example.
The left panel of Figure 4 collects the relevant elements of such an application: the state

equation, which is given by the matrix form of our theoretical model, as well as the observation
equation, which simply maps theoretically predicted values onto measured position (xot) and
velocity (vot). The right panel of Figure 4 shows the results of such an application in a simulated
setup and with known error variances – both measurement noise variance (VM ) and process
noise variance (VP ) are assumed to be zero mean Gaussian white noise –, which illustrates
how the Kalman Filter transforms noisy measurements into filtered measurements serving as
estimates for the true position and speed of the falling object. As our simulation provides us
with the ’true’ values of interest, we can therefore show how the Kalman Filter succeeds in
reducing error and noise as compared to empirical measurements.

Figure 4: Object falling in air
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In the case of the falling object, the application of the Kalman filter rests on established,
law-like relationships from Newtonian physics. The Kalman filter mediates between the theo-
retically predicted values for position and velocity and the noisy data obtained from the GPS
measurement device in order to find the ”best estimate” for the state variables. In doing so,
the filtering process aids the application of already well-established theoretical and empirical
tools – it does not resolve conceptual questions, but merely aligns the application of these tools.
Additionally, the Kalman Filter tracks true values that are guaranteed to exist: a falling ob-
ject can be said to always have some ’true’ position and speed, even though the measurement
of these values might be imprecise. Finally, from the perspective of measurement theory, the
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Kalman Filter is a tool for aggregating knowledge from diverse sources into a more precise and
smooth final output.

4.3 The European Commission’s Kalman filter model for inventing NAWRU

estimates

To better understand the peculiarities of the underlying conceptual transfer from engineering
to macroeconomics, we now again turn to a closer inspection of the use of the Kalman Filter
within the EC’s NAWRU model. Figure 5 provides a representation of the basic characteristics
of the EC’s NAWRU model in analogy to Figure 4, containing the main equations of the state
space model under study (left panel; see also equations 1 and 2) and an actual example of
its application (right panel). In the case of the falling object, the state equation included
a well-corroborated theoretical model based on classical mechanics; in contrast, the NAWRU
model’s state equation is based on a set of assumptions regarding the statistical properties of the
cyclical component (Gt) and trend component (Nt) of the unemployment rate, largely devoid of
theoretical arguments. Conversely, in the case of the falling object the observation equation was
simply used to map theoretical results onto the level of empirical measurement, while theoretical
arguments play a key role for the NAWRUmodel: the observation equation does not only include
the crucial definition of unemployment as the sum of ’natural’ and ’cyclical’ unemployment, but,
additionally, conceptualizes a relation between unemployment and (wage) inflation. It does so
by means of introducing a so-called Phillips-curve, which ”links cyclical unemployment (i.e. the
unemployment gap) to labour cost developments [real unit labor costs, rulc], while non-cyclical
unemployment is assumed not to be a↵ected by labour cost developments. In this setting, non-
cyclical unemployment estimates are commonly referred to as the non-accelerating wage rate of
unemployment (NAWRU)” (European Commission, 2014, 22).

Figure 5: Kalman-filtering of the unemployment rate
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Hence, the state equation conceptualizes the key theoretical components, natural and cyclical
unemployment, as purely statistical relations based on the relative fit of di↵erent autoregressive
models. This is indeed remarkable, as the theoretical construct of a ’natural rate of unemploy-
ment’ posits that the structure of labor markets – such as employment protection legislation,
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unemployment benefits, the organization of wage negotiations etc. – determines labor mar-
ket performance (Friedman, 1968; Orlandi, 2012), an argument that does not appear in the
equations given in Figure 5 (see also the subsequent argument developed in section 5).
Conversely, the observation equation employs two very basic theoretical rationales of the

NAWRU concept, namely that a natural rate of unemployment exists and that deviations from
this natural rate will manifest in changes in inflation. This asymmetry in the basic setup of
the Kalman Filter’s design points to the interesting fact that the underlying statistical model
is not formulated in terms that are actually observable (although it is a statistical model),
so that the observation equations need to introduce additional arguments on the relation of
these unobservables to the relevant empirical data. Although the EC is keen to emphasize
”the preference for an economic, as opposed to a statistical, approach” (Havik et al., 2014, 5),
this setup also implies that one of the two main theoretical assumptions – the Phillips curve
relation between the unemployment gap and labor cost inflation – is not meant to actually
explain the variable of interest (unemployment); instead, it is introduced to aid in calibrating
the Filter, i.e. providing additional information for calculating the Kalman gain. Overall,
theoretical and empirical discussions on a trade-o↵ between unemployment and inflation do not
only feature prominently in widely used macroeconomic textbooks (e.g. Blanchard and Johnson,
2012; Mankiw, 2016); Phillips-curve type relations also provide the dominant framework for
macroeconomic policy evaluation and formulation, especially in the field of monetary policy (e.g
Blanchard, 2016). The non-accelerating inflation rate of unemployment (NAIRU) is a major
concept in modern macroeconomics – with its core proposition that, for any economy and at
any point in time, there exists some (unobserved) rate of unemployment at which inflation
remains constant (e.g. Ball and Mankiw, 2002). From this perspective, the EC’s emphasis
that its NAWRU model is connected to ’natural rate’ theory pays tribute to the dominant
prevailing canon in macroeconomics. Nonetheless, the NAWRU as an approach to explaining the
unemployment-inflation trade-o↵ has repeatedly been criticized for its conceptual foundations
(e.g Galbraith, 1997; Davidson, 1998; Sawyer, 2001) and its empirical track record, which is
characterized by large uncertainties around estimated NAWRU values (e.g. Staiger et al., 1997;
Estrella and Mishkin, 2007) and by severe di�culties in matching ’natural rate’ theory with
empirical observations on the evolution of unemployment and inflation (e.g. Farmer, 2013).
Similarly, the Phillips curve has been subject to intense academic debate about whether a
stable unemployment-inflation relation actually exists over time (e.g. Lucas, 1976; Hall and
Hart, 2012).
In practical Kalman filter applications, the engineers’ goal is to get as close as possible to

current true values of the unobservable variable(s) of interest, such as the position of a falling
object (see Figure 4). Hence, the so-called end-point bias in statistical filtering – which has
been discussed in section 3 and assigns a disproportionate impact to the last observations (e.g.
Kaiser and Maravall, 2001; Ekinci et al., 2013; Havik et al., 2014) – can be considered as a
feature in the realm of engineering. With regard to the EC’s NAWRU model, however, the
very same end-point bias is much more of a bug: as ’natural rate theory’ assumes that the
evolution of structural unemployment is determined by long-term structural properties related
to the institutional characteristics of the labor markets (Friedman, 1968), the cyclical influences
of the ups and downs of the business cycle should not have much impact on NAWRU estimates
(Heimberger and Kapeller, 2016). However, as illustrated in the right-upper panel of Figure 2
for the case of Spain, the crisis that started in 2008/2009 has led to drastic upward movements in
the NAWRU: estimates of ’natural unemployment’ have followed actual unemployment, without
any significant changes in labor market regulation. While these upward revisions are cyclically
induced as they are translated into estimates via the end-point bias, they are hard to challenge
in practice, as they gain an authoritative stance when it comes to judging a nation’s economic
development, as there is no benchmark for true values of ’natural unemployment’.
Introducing a Phillips curve-type relation into the state space model is instrumental for
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making the Kalman filter calibrate the model’s parameters (e.g. Staiger et al., 1997; Franz, 2005;
Watson, 2014). As long as the Kalman filter produces estimates on the extent of ’structural
unemployment’ in rough accordance with the concept of the ’natural rate of unemployment’
(e.g. Laubach, 2001), existing theories that postulate the existence of an unemployment rate
at which inflation remains stable are rationalized. From this perspective, applying the Kalman
filter in order to separate the trend from the cycle serves to resolve a core conceptual issue
by providing quasi-observational data on a hitherto unobservable, but theoretically postulated
variable. In our example from classical mechanics, the Kalman filter provided ’best estimates’
for the ’true’ values regarding a falling object’s position and velocity, thereby operating as a tool
for refining the noisy GPS measurements in mediation with law-like theoretical predictions based
on Newtonian physics. In contrast, the NAWRU Kalman filter does not work as a practical tool
for finding the best filtered estimates for variables that are guaranteed to exist; rather, it plays
a prime role by generating novel and authoritative knowledge claims,7 which serve to ’invent’
natural unemployment in the sense of Chang (2004).
In sum, three related aspects are crucial for characterizing the epistemological di↵erences be-

tween the two applications of the Kalman filter compared here. First, the theoretical arguments
used by the EC are not based on well-corroborated theory, but rather come with a long his-
tory of doubt fostered by their speculative nature (natural unemployment) as well as empirical
uncertainties (the Phillips curve). Hence, the Kalman Filter is not employed as a means for
the practical refinement of the application of well-established theories, but used to provide an
empirical representation of the rather speculative model of natural unemployment, which can be
applied in the context of political decision-making. Second, it follows that the Kalman Filter in
the EC’s model does not necessarily measure something that actually exists. Even if there was
no such thing as a ’natural rate of unemployment’ – and this is what critical economists have
been arguing all the way – the Kalman Filter model as depicted in Figure 5 would still provide
point-estimates in form of specific numbers; and these model-based estimates are employed to
coordinate fiscal policies in Europe (Heimberger and Kapeller, 2016). Third, we conclude that
in the economics context studied in this paper, the Kalman Filter is not used in accordance
with its basic intention from the field of engineering – to provide an aggregation of di↵erent
estimates of uncertain or known quality in order to refine noisy empirical data – but rather to
invent a novel way of seeing and assessing the world by generating estimates for a theoretically
postulated, but hitherto ’unseen’ and crucial variable.

5 The technological features of the EC’s NAWRU model: the

obvious gap between explanation and design

Econometric models often serve purposes in the design of economic and public policy aiming
to inform decision-makers on the potential consequences of di↵erent choices (e.g Klein, 1947;
Sims, 2004). Employed as technological rules (Bunge, 1967)), they are regularly interpreted as
guides for navigating through the complexity characterizing the social realm. In this context,
econometric models can be said to be useful as a navigation device for reality insofar as they
employ or signify the (most) relevant causal relationships governing the phenomenon of interest
(Hoover, 2015). This crucial point is recognized by economists at the European Commission
working on the potential output model:
”[W]ith an economics based method, one gains the possibility of examining the underlying

economic factors which are driving any observed changes in the potential output indicator and
consequently the opportunity of establishing a meaningful link.” (Havik et al., 2014, 5)
As has been emphasized throughout this paper, the ’natural rate theory’ underlying the

7NAWRU estimates are authoritative because they are readily available from the European Commissions
AMECO database, so that they are widely used by economists as a proxy for structural unemployment.
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EC’s framework postulates a causal relationship running from ’rigid labor market institutions’
to higher structural unemployment: labor market regulations such as employment protection
legislation, minimum wages, centralized bargaining by labor unions etc. supposedly hinder the
workings of free market forces and constrain the economy, which, in turn, cannot reach full
employment. While this underlying ’natural rate theory’ roughly inspires the greater part of
the policy implications drawn from the model, these very same labor market institutions do
nowhere actually enter the NAWRU model to explain natural unemployment in the first place.
Moreover, as shown elsewhere (Heimberger et al., 2016), indicators for labor market regulation
are largely unsuitable for explaining di↵erences across NAWRU estimates (see also sections
3 and 4). Instead of turning to actual labor market indicators – a series of such indicators
would be readily available8 – the EC’s approach posits a parameter to statistically measure the
outcome of the postulated mechanism (see section 4).
After obtaining point-estimates on the NAWRU by means of model-based measurement, these

estimates are reinterpreted in the policy arena as a proxy for ’structural unemployment’, em-
ployed by the European Commission as an authoritative guide for policy-making: by means of
advocating ’structural reforms’, member countries that face an increasing NAWRU are urged
to lower structural unemployment by ’supply side reform’ (Canton et al., 2014), i.e. they are
supposed to deregulate their labor markets by cutting unemployment benefits and minimum
wages, dismantling employment protection law etc. Additionally, NAWRU estimates serve as
a crucial variable for assessing the budgetary situation in EU member countries (Klär, 2013;
Heimberger and Kapeller, 2016): as the NAWRU increases, a larger part of a country’s budget
deficit is automatically interpreted to be of a ’structural nature’, i.e. not caused by a downswing
in the business cycle. Hence, deficits are considered as more problematic for the long-run sus-
tainability of public finances, so that the demand for fiscal consolidation imposed by European
authorities increases (ECFIN (2013); see also section 2).
Hence, the imperative of inventing NAWRU estimates as authoritative knowledge on the

extent of ’natural unemployment’ constrains EU countries’ policy leeway when it comes to
finding democratically legitimate and socially sustainable configurations for fiscal policy and
labor market regulation. In sum, it can be acknowledged that there is at least a conceptual
transmission belt between the NAWRU model’s estimates and the political suggestions derived
from these estimates. However, assuming that the asserted relationship between labor market
institutions and unemployment is indeed reliable, one has to ask why it does not enter the
model in the very first place. Certainly, the gap between the model’s design and its political
explanation by European policymakers is unusual and striking.

6 Conclusions

In this paper, we have analyzed the conceptual foundations of a macroeconomic model carrying
major implications for the political management of the European Union in general and the
Eurozone in particular. We argue that the model under study can be best understood as a form
of model-based measurement device. We have focused on how the model is employed to invent
empirical representations of a traditional concept in economic thought, namely the idea of a
’natural rate of unemployment’. These representations are in large part derived from purely
statistical consideration, but then re-applied to the material at hand on the basis of a very
di↵erent conceptual apparatus: to achieve the aim of measuring an unobservable, theoretically
postulated value (the ’natural rate of unemployment’), the model not only imposes a series of
pivotal theoretical and ontological commitments, but also relies on a statistical modeling and
filtering technique – the Kalman Filter –, which represents a core element of the measurement

8For example, the OECD operates a regularly updated database on many institutional labor market variables,
sich as trade union density, active labor market policies, minimum wages, tax wedges, employment protection
legislation etc.
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approach. The usage of the Kalman Filter in the European Commission’s potential output
model di↵ers remarkably from the filter’s traditional applications in engineering; and this raises
further research questions, not only regarding the validity of the obtained estimates, but also
with respect to the more general problem of how to sensibly and accurately import and adapt
formal or statistical techniques developed in the natural sciences to social and economic issues.
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