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1 Introduction

The level of natural gas prices in the European Union surged in the summer of 2021,
ending a two-decade period of low and stable prices. Both demand pressures, stemming
from the economic recovery following the COVID-19 pandemic and supply disruptions
related to the Russian invasion of Ukraine arguably contributed to this unexpected de-
velopment. At the peak of the crisis, the price of one-month ahead natural gas futures
for the European market (TTF) had risen by a factor twelve relative to its 2019 average
(see Figure 1). While import prices, which are more relevant for industry, do not co-move
perfectly with gas futures prices, they also started to increase substantially in Germany
from 2021 onward.

Figure 1 also highlights the regional segmentation, which distinguishes natural gas
markets from the global market for crude oil. While natural gas prices surged in Europe,
they exhibited a much smaller increase in East Asia (JKM) and remained relatively stable
in the US (Henry Hub). Despite recent political attempts to launch liquefied natural gas
(LNG) terminals along the German coastline, time to build and limited global capacity of
LNG maritime vessels suggests that natural gas markets are likely to remain segmented for
the foreseeable future, with pipeline transport as the dominant mode of transportation.1

Analyzing price dynamics in regional natural gas markets thus helps to better under-
stand the cause of regional business cycles. Accordingly, this paper proposes a structural
vector-autoregressive (SVAR) model of the German natural gas market to investigate the
effects of natural gas supply and demand shocks on domestic gas supply, import prices,
inventories, and aggregate economic activity. We consider Germany as a particularly
interesting case. In its efforts to phase out coal and nuclear energy from the energy mix,
Germany decided to rely predominantly on natural gas, until renewable energy sources
are sufficient to cover domestic demand. Before 2022, more than half of Germany’s sup-
ply of natural gas was imported from Russia, suggesting a strong energy dependency.
Moreover, the German economy is characterized by a comparatively high value-added
share of industry, a significant fraction of which can be classified as energy-intensive.2

For these reasons, Germany appears to be particularly vulnerable to disruptions in the
natural gas market.

To investigate the drivers and economic consequences of the recent surge in natural
gas prices, we draw on the extensive literature on SVAR models of the global oil market
and distinguish between structural natural gas supply and demand shocks by imposing
sign restrictions on impulse response functions. To sharpen inference, we complement
these assumptions with additional narrative restrictions on the sign, size, or effects of
shocks during well-documented episodes in 2022 as well as an earlier natural gas supply

1For a detailed analysis regarding the obstacles to natural gas trade, see Barbe and Riker (2015).
2In 2022, the value-added share of German industry was 25%, 16% of which was classified as energy-

intensive.
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Figure 1: German natural gas import price and one-month ahead natural gas futures for Europe
(TTF), the US (Henry Hub), and northeast Asia (JKM)

shock associated with the Russia-Ukraine gas transit dispute in 2009. Our econometric
framework thus allows us to quantify the contribution of each of these shocks to fluctu-
ations in domestic natural gas prices and economic activity — both on average over the
sample period and during the recent natural gas price surge.

The structurally shocks explain up to 90% of the variance in the endogenous variables,
suggesting that the model successfully captures the key structural drivers of the German
natural gas market. We find that supply and demand shocks in the natural gas market
have large and persistent price effects, albeit moderate output effects. Regarding the
2022 energy crisis, we find that negative supply and positive storage demand shocks
contributed disproportionately to the surge of natural gas import prices between February
and August 2022.3 Nevertheless, the impact on German industry was moderate. Despite
large adverse natural gas supply shocks, industrial production remained fairly robust.
After the natural gas price spike in the summer of 2022, the relatively mild winter that
followed led to an easing of domestic natural gas prices and about 20% higher natural
gas inventories compared to what would have been expected in an average winter. This
easing of the natural gas market occurred despite lower natural gas imports, as increases
in imports from Norway, Belgium and the Netherlands did not fully compensate for the
lack of imports from Russia.

An immediate disruption of gas imports from Russia in April 2022 — for example due
to a German embargo on Russia demanded by some politicians and economists — would
likely have led to only moderately and temporarily higher gas import prices compared to
the actual scenario, in which flows through the Nord Stream 1 pipeline connecting Russia

3Figure A.1 in Appendix A.1 illustrates the successful efforts by the German government to ramp up
gas inventories, following exceptionally low levels in March 2022. The political aim to increase the level
of gas inventories to 90% by November was already reached in October 2022.
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and Germany were reduced to zero in three steps between June and September of 2022.
A hypothetical disruption of natural gas flows through Europipe 1 and 2, which transport
natural gas from Norway to Germany and currently account for 36% of German imports, is
predicted to have comparable effects on natural gas import prices and aggregate economic
activity.4 A key assumption for these counterfactual simulations is that substitution
patterns remain similar to those observed in the summer of 2022. The effects should
therefore be interpreted as a lower bound. Given that Germany currently relies on only
three main natural gas suppliers — Norway, Belgium, and the Netherlands — the loss of
another supplier could be more difficult to compensate, as many pipelines to Germany
are operating at close-to-full capacity. Although Germany has recently commissioned
LNG terminals, the amount of natural gas imported via these terminals has so far been
negligible and is unlikely to significantly increase the scope for substitution, at least in
the short term.

Our work contributes to the recent policy debate on the macroeconomic effects of
energy price shocks in import-dependent economies, such as Germany, and the potential
output losses of an embargo on natural gas imports from Russia (see, e.g., Bachmann
et al., 2022; German Council of Economic Experts, 2022; Krebs, 2022). Methodically,
we build on the extensive SVAR literature studying the market for crude oil. Starting
with Kilian (2009), numerous contributions have disentangled the effects of supply and
demand shocks in the global oil market on the price of crude oil and thus on economic
conditions in the U.S. and abroad (see, in particular, Kilian and Murphy, 2012, 2014;
Baumeister and Peersman, 2013a,b; Baumeister and Hamilton, 2019). Despite the recent
commercialization of techniques to liquefy natural gas for transport using LNG maritime
vessels, regional gas markets remain comparatively fragmented, as illustrated by sub-
stantial natural gas price differentials between the U.S., Asia, and continental Europe in
Figure 1. In contrast to the global oil market, our analysis is therefore tailored to a spe-
cific regional gas market. Furthermore, the effect of temperature is much more important
in the natural gas market, as natural gas is the most important energy source for heating
in Germany.

The SVAR analysis in this paper focuses on the natural gas market of Germany —
the world’s fourth largest economy, which is highly dependent on imports of primary
energy carriers — to disentangle the effects of natural gas supply and demand shocks
using identifying strategies that are well established in the oil-market literature. It is
thus related to previous work by Nick and Thoenes (2014), who also investigate the role
of supply and demand shocks in the German natural gas market in a recursively identified
SVAR model à la Kilian (2009), albeit lacking the recent episode for identification.5

4Europipe 1 and 2 are delivering natural gas from the Norwegian Draupner E platform to Dornum and
from Kårstø in Norway to Emden in Germany, respectively. Along the German coast, the two pipelines
run next to each other in shallow water, making them susceptible to targeted disruptions.

5Using market-based measures of inflation expectations, Böck and Zörner (2023) instead focus on the
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The rest of this paper is structured as follows. Section 2 discusses the SVAR model,
data, and identifying assumptions as well as the importance of narrative sign restrictions.
Section 3 presents and discusses our baseline results. Section 4 conducts scenario analyses
to quantify the effects of a hypothetical Russian gas embargo and different temperature
paths during 2022. Section 5 presents the robustness checks, while Section 6 concludes.

2 Empirical Methodology

In this section we present the econometric model and the time series used for estimation.

2.1 Model

We model the dynamics of the German market for natural gas using a four-variable SVAR:

A0yt = c+
12∑
l=1

Alyt−l +
11∑
i=1

γisi + δxt + ϵt, ϵt ∼ N(0, In), (1)

where the n × 1 vector of endogenous variables yt contains the percentage change in
domestic gas supply, an indicator of real economic activity, the percentage change of
the real gas price, and the change in domestic gas inventories. We account for seasonal
variation in the seasonally unadjusted time series by including monthly dummies si, which
equal one for the respective month and zero otherwise.6 Moreover, we include the average
monthly temperature, xt, as an exogenous regressor to control for temperature-related
gas demand, in particular for consumption in gas-heating systems. We include an entire
year of lags to allow for persistent cycles in the German natural gas market.

Given that ut = A−1
0 ϵt, where ut denotes the VAR reduced-form residuals, knowledge

about the structural impact multipliers in A−1
0 is sufficient for recovering the structural

objects of interest. To avoid overfitting, we use Bayesian estimation techniques, imposing
Minnesota-style Normal-Wishart priors as in Kadiyala and Karlsson (1997).7 The overall
tightness is set to 0.2, and the degrees of freedom parameter is set to n+ 2.

2.2 Data

We estimate the reduced-form representation of the model outlined above using monthly
time series for Germany covering 1999:1–2022:12. Data on domestic natural gas supply,
the cross-border price, and inventories are obtained from the Federal Office for Economic
Affairs and Export Control (BAFA). We define supply as the sum of imports and (a small

role of inflation expectations for the propagation of natural gas price shocks in the euro area.
6We use eleven instead of twelve seasonal dummies to avoid singularity of the regression matrix due

to the presence of the intercept vector c (Kilian and Lütkepohl, 2017).
7Using an uninformative prior leads to qualitatively identical but somewhat more erratic results.

5

https://www.bafa.de/DE/Energie/Rohstoffe/Erdgasstatistik/erdgas.html
https://www.bafa.de/DE/Energie/Rohstoffe/Erdgasstatistik/erdgas.html


amount of) domestically produced natural gas less exports. As a measure of real domestic
activity, we use the German industrial production (IP) index excluding construction
activity. The real gas price corresponds to the cross-border price of gas deflated by the
German consumer price index (CPI). Following Baumeister and Hamilton (2019), changes
in natural gas inventories enter the model as a fraction of the previous month’s gas supply.
Natural gas supply and the real gas price enter the model in percentage growth rates,
while the seasonally unadjusted industrial production index enters in logs.8 Finally, we
obtain the average monthly temperature from the German Weather Service (DWD).

2.3 Identification

Our goal is to set-identify three structural disturbances: flow supply shocks, aggregate
demand (sometimes called flow demand) shocks, and storage demand (sometimes called
speculative demand) shocks. We leave one shock unrestricted, which encompasses other
drivers of the demand for natural gas, such as shifts in preferences for or advancements in
storage technology. Each shock is normalized such that it raises the real price of natural
gas. We achieve set-identification by imposing sign restrictions on the impulse response
functions of the endogenous variables along the lines of Kilian and Murphy (2014). These
restrictions are summarized in Table 1.

Following the oil market literature, a flow supply shock is assumed to move German
gas supply and economic activity in the same direction, whereas the gas price moves in
the opposite direction. An aggregate demand shock instead moves German gas supply,
economic activity, and the real gas price in the same direction. As stressed by Kilian and
Murphy (2014), the response of inventories is ex ante ambiguous. On the one hand, both
a negative flow supply and a positive aggregate demand shock may cause a reduction of
gas inventories. On the other hand, the anticipation that either of these shocks raises
natural gas prices in the future may increase the demand for inventories already today.
Accordingly, we abstain from restricting the impact response of inventories.

In response to a storage demand shock, gas supply, real gas price, and gas inventories
move in the same direction, whereas economic activity moves in the opposite direction.
This guarantees that an exogenous increase in storage demand is not conflated with an
exogenous disruption of gas supply (i.e. a negative flow supply shock) or an exogenous
reduction of economic activity (i.e. a negative aggregate demand shock).

While each admissible model satisfies by construction the sign restrictions in Table
1, not all set-identified models are equally plausible from an economic perspective. To
narrow down the set of admissible models, we impose a small number of so-called narrative
sign restrictions (NSR), as proposed by Kilian and Murphy (2014) and formalized by

8Figure A.2 in Appendix A.1 plots the time series of the endogenous variables, as they enter the
SVAR model in equation (1).
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Table 1: Sign restrictions on impact responses

Flow supply
shock

Aggregate
demand shock

Storage demand
shock

Gas supply growth − + +
Industrial production − + −
Real gas price growth + + +
Gas inventories +

Notes: + and − indicates a positive and negative response, respectively. Missing entries mean that no
sign restriction is imposed. All sign restrictions are imposed as weak inequality constraints on impulse
response functions in the period of the shock.

Antolín-Díaz and Rubio-Ramírez (2018). The key idea is to select the economically
most plausible candidate models by restricting the sign of a given structural shock or its
contribution to the historical decomposition of the endogenous variables during selected
episodes in line with a widely accepted narrative. In addition to the sign restrictions in
Table 1, we therefore require that admissible models must satisfy the following NSRs:

1. The gas supply shock was negative in January 2009, when the Russia-Ukraine tran-
sit dispute led to an unexpected halt of natural gas flows through Transgas between
January 7 and January 20 (see, e.g., Nick and Thoenes, 2014).

2. The gas supply shock was negative in June and July 2022, when Russia unexpectedly
reduced the natural gas flow through Nord Stream 1 to 50% and zero, respectively
(see Figure A.3 in Appendix A.1).

3. For the periods specified by Restriction 2, gas supply shocks are the overwhelming
contributor to unexpected movements in gas supply.

4. The aggregate demand shock is the overwhelming contributor to the unexpected
reduction in industrial production at the start of the COVID-19 pandemic in April
2020 (see, e.g., Balleer, Link, Menkhoff, and Zorn, 2022).

We obtain model draws satisfying both sign and narrative restrictions using the re-
jection sampler of Rubio-Ramírez, Waggoner, and Zha (2010) as well as the importance
sampler of Antolín-Díaz and Rubio-Ramírez (2018).9

9As stressed by Baumeister and Hamilton (2019), the prior on the orthogonal rotation matrix, which
is commonly imposed in SVARs with sign restrictions (see, e.g., Uhlig, 2005; Rubio-Ramírez et al., 2010;
Arias, Rubio-Ramírez, and Waggoner, 2018), may be unintentionally informative. Whether this concern
is empirically relevant is an ongoing debate, though. Inoue and Kilian (2021) show that, in models with
multiple sign restrictions and further restrictions, such as narrative restriction, the impact of the prior
tends to be small. Moreover, resorting to the approach of Baumeister and Hamilton (2019) requires
a-priori beliefs about the structural coefficients. Given that the existing literature does not warrant
forming such priors for the (German) natural gas market, and our model contains several identifying
restrictions, we follow the standard approach of Rubio-Ramírez et al. (2010).
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2.4 Importance of narrative restrictions

To assess the relevance of the narrative restrictions, we follow Antolín-Díaz and Rubio-
Ramírez (2018) and calculate rejection rates both individually and jointly (see Table 2).
It is important to note that a high rejection rate should not be interpreted as evidence
against the plausibility of a particular NSR. Instead, it suggests that the baseline speci-
fication encompasses structural parameters that are at odds with the narrative evidence.

The restrictions on the signs of gas supply shocks in January 2009 (NSR 1) and
mid-2022 (NSR 2) are mildly informative. About 10% of the models identified based on
conventional sign restrictions do not satisfy them individually, while 20% do not satisfy
them jointly, suggesting that both restrictions add unique information. The restrictions
on the contribution to the historical decomposition in April 2020 (NSR 3) and mid-2022
(NSR 4) have substantially more bite. About 50% and 60% of the candidate models do
not satisfy NSR 3 and NSR 4, respectively. Imposing them jointly further shrinks the
set of admissible models to less than 20% of the models identified by conventional sign
restrictions alone, suggesting again that both NSRs carry relevant information. Interest-
ingly, the restrictions on the historical decompositions are consistent with those on the
signs of shocks, as adding the latter leaves the rejection rate virtually unchanged. In
total, the results suggest that the narrative restrictions add valuable information to the
identification process and eliminate models that entail implausible structural estimates.

Table 2: Rejection rates for narrative restrictions

Restrictions NSR 1 NSR 2 & 3 NSR 4 NSRs in row

Signs of shocks 10.8 11.9 – 18.9
Historical decompositions – 49.3 60.5 80.3
Joint restrictions 10.8 50.1 60.5 81.5

Notes: Rejection rates in % of models identified based on sign restrictions for each narrative restriction
(NSR) imposed individually and for (sub-)sets of NSRs imposed jointly.

3 Baseline Results

In this section, we investigate the average effects of the identified structural shocks. We
start by discussing their long-run contributions to the forecast error variance decomposi-
tion. We then analyze the impulse responses to each of the structural shocks. Finally, we
quantify their contributions to the historical decompositions of the endogenous variables.

3.1 What drives dynamics in the German gas market?

As a starting point, we assess the contribution of each structural shock to the uncondi-
tional variance of the endogenous variables on average over the sample period. Table 3
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Table 3: Contribution of structural shocks to FEVD (in %)

Flow supply
shock

Aggregate
demand shock

Storage demand
shock

Gas supply growth 29.2 10.9 41.0
Industrial production 10.3 57.1 17.5
Real gas price growth 53.4 25.0 9.7
Gas inventories 12.5 12.4 33.0

Notes: Posterior means of forecast error variance decomposition (FEVD) based on models satisfying
both conventional and narrative sign restrictions. Unconditional variances are approximated by setting
the forecast horizon to h = 100 months. Residual contributions to the FEVD accounted for by other gas
demand shocks.

reports posterior means of the forecast error variance decomposition (FEVD) after 100
periods, which approximates the unconditional variance. Flow supply, aggregate demand,
and storage demand shocks account for the vast majority of the FEVD for each variable,
amounting to between 80 and 90% for gas supply growth, industrial production, and real
gas price growth and about 60% for gas inventories.

Note that 41% of the unconditional variance of gas supply growth is explained by
storage demand shocks, suggesting that gas inventories are used for speculative trading
or that German storage capacity might be too low, requiring frequent sizeable changes in
natural gas supply. Another third of the variance is accounted for by flow supply shocks,
while aggregate demand shocks only contribute about 11% to the FEVD of gas supply
growth. The latter finding may be rationalized by the fact that natural gas has become
an important energy carrier in the recent past. Consistently, flow supply shocks explain
a mere 10% of the unconditional variance of industrial production, whereas the majority
is attributed to aggregate demand shocks. In light of German industry’s strong export
dependency, this appears plausible.

Gas supply and demand shocks account for 90% of the unconditional variance of real
gas price growth, with the largest fraction attributed to flow supply shocks. Close to
one third of unexpected fluctuations in gas inventories is due to storage demand shocks,
whereas flow supply and aggregate demand shocks together merely account for another
quarter. Accordingly, the remaining 42% of the unconditional variance of gas inventories
is explained by the residual shock, which does not have a clear economic interpretation.
One candidate explanation for the latter findings are non-economic factors, such as geo-
strategic or political considerations.10

10During 2021, for example, Gazprom Germania neglected refilling its gas storage facilities in Germany,
leading to exceptionally low levels of gas inventories in March 2022 (see Figure A.1 in Appendix A.1).
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Signs & narratives

Figure 2: Impulse response functions to structural gas supply and demand shocks
Note: Red lines and shaded areas indicate point-wise median IRFs and 68% equal-tailed posterior
density intervals based on the SVAR identified by conventional sign restrictions. Blue lines and shaded
areas indicate the corresponding objects based on the SVAR identified by conventional and narrative
sign restrictions.

3.2 Impulse response analysis

Figure 2 plots point-wise medians and 68% equal-tailed posterior density intervals of the
impulse response functions (IRFs) for the SVAR identified by conventional sign restric-
tions alone (in red) and the SVAR model identified by conventional and narrative sign
restrictions (in blue). The IRFs of gas supply and real gas price growth are accumulated
and are reported in levels.11

First, consider the IRFs to a flow supply shock in the top row. According to either
identification scheme, a negative flow supply shock leads to persistently lower gas supply
and a persistently higher real gas price. The increase in gas prices leads to a reduction of
industrial production (IP). While the largest drop lasts for only two months, IP remains
slightly below steady state even two years after the shock. Gas inventories, which were
left unrestricted, increase for about four months. While the IRFs are qualitatively robust
to the identification scheme, the SVAR identified by conventional and narrative sign re-
strictions suggests that a flow supply shock of similar magnitude induces a larger increase
in the real gas price, albeit an almost identical reduction of IP. Intuitively, the narrative
sign restrictions are consistent with model draws that imply a smaller elasticity between
gas prices and economic activity. For example, the gas supply cuts in June and July
2022 captured by NSR 2 were followed by large price increases but moderate reactions of
German IP.

11The IRFs of changes in gas inventories, which are expressed in percent of the previous period’s gas
supply, are not cumulated.
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A positive aggregate demand shock leads to a persistently higher economic activity,
which remains significantly above steady state for at least two years after the shock. The
increase in IP goes along with a persistent increase of gas supply. The real price of natural
gas also increases for about ten months before starting a slow decline. Gas inventories
do not respond strongly to the aggregate demand shock. With narrative restrictions,
the impact on both gas supply and IP is somewhat larger on impact, while the real gas
price exhibits an almost identical response. Gas inventories fall on impact and slightly
overshoot after a few months.

A positive storage demand shock induces persistently higher levels of gas supply and
the real gas price. Economic activity drops strongly in the first two months and remains
slightly below steady state for more than a year. The dynamics of IP are similar to those
following a negative flow supply shock. However, gas supply drops while it increases in
response to the storage demand shock, and the gas price increases considerably more in
the supply-induced case. Nevertheless, the storage demand shock, in particular, exerts
strong negative effects on real economic activity. The response of changes in gas storage
growth is hardly affected by the addition of narrative restrictions.

From Figure 2, imposing narrative restrictions primarily affects the IRF of the real
gas price to each of the structural shocks. Without narrative restrictions, its median
response to a negative flow supply and a positive aggregate demand shock is of the same
order of magnitude. With narrative restrictions, the price response to a negative flow
supply shock is about three times as large. In light of the recent turmoil in the German
gas market, the latter result appears much more plausible.

3.3 Historical decomposition

The contributions to the long-run FEVD in Table 3 indicate that gas supply and demand
shocks are important drivers of fluctuations in the German natural gas market. However,
they are mute about their importance during selected episodes. Beyond their contribution
on average over the sample period, we are interested in how each shock contributed to
fluctuations of the endogenous variables over time and, in particular, during the recent
turmoil in the German gas market. In a first step, we consider the period 2000:1–2018:12.
We then zoom in on the energy crisis at the end of our sample period.

Figure 3 plots point-wise median estimates of the cumulative effect of each structural
shock on real gas price growth, which is depicted by the dashed lines. Note, in particular,
that the residual shock contributes very little to fluctuations in real gas price growth,
confirming that the model explains its dynamics based on the identified structural shocks.
The historical decomposition suggests that, at the start of the sample, fluctuations in real
gas price growth were almost exclusively driven by flow supply shocks, while all three
structural shocks contributed in the aftermath of the global financial crisis. Towards the
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Figure 3: Historical decomposition of German real gas price growth for 2000:2–2018:12
Note: Dashed lines show deviations of actual data from the deterministic trend. Solid lines show the
contribution of each shock to the deviation from the deterministic trend.

end of the sample, flow supply and storage demand shocks appear to be the main drivers
of fluctuations in real gas prices.

Similarly, Figure 4 plots point-wise median estimates of the cumulative effect of each
structural shock on gas supply growth. For the entire sample period, the general pattern
of change of gas supply is dominated by flow supply shocks, whereas aggregate demand
shocks play only a moderate and less systematic role. Consistent with their large contri-
bution to the FEVD (see Table 3), storage demand shocks have been an important driver
of fluctuations in German gas supply, although we control for both seasonal patterns and
average monthly temperature. Especially during the early 2000s and in 2017–2018, gas
supply growth seems to be strongly affected by storage demand shocks.12

In the aftermath of the Russian invasion of Ukraine, Germany experienced a dramatic
surge of energy prices (see Figure 1). In what follows, we assess the structural drivers of
fluctuations in the German gas market during this episode. Accordingly, Figure 5 depicts
the historical decomposition of the endogenous variables based on the SVAR identified

12The decompositions of the other two variables are provided in Appendix A.1. Figure A.4 illustrates
that German IP was predominantly affected by aggregate demand shocks in the first half of the sample,
whereas storage demand shocks contributed to a similar extent in the second half. Figure A.5 shows
that, in contrast to the other endogenous variables, the residual shock has some explanatory power for
changes in natural gas inventories, in particular towards the end of the sample.

12



2002 2004 2006 2008 2010 2012 2014 2016 2018

-20

0

20

2002 2004 2006 2008 2010 2012 2014 2016 2018

-20

0

20

2002 2004 2006 2008 2010 2012 2014 2016 2018

-20

0

20

2002 2004 2006 2008 2010 2012 2014 2016 2018

-20

0

20

Figure 4: Historical decomposition of German gas supply growth for 2000:2–2018:12
Note: Dashed lines show deviations of actual data from the deterministic trend. Solid lines show the
contribution of each shock to the deviation from the deterministic trend.

by conventional and narrative sign restrictions for 2020:1–2022:12.
In the top left panel, gas supply growth fluctuated around zero with no obvious trend

from early 2020 until early 2022, when Russia started to reduce gas flows to Germany.
From April 2022 onward, gas supply growth remained below its deterministic trend for
several months, mainly due to the negative effects of flow supply and storage demand
shocks. In September and October of 2022, the cumulative effect of flow supply shocks
reversed, as the disruption of Russian gas supply was offset by higher imports especially
from Norway (see Figure A.3 in Appendix A.1).

In the bottom left panel, negative flow supply shocks contributed to strong gas price
growth during most months in 2020–2022. It is important to recall that NSR 3 only
requires that flow supply shocks are the dominant driver of real gas price growth in June
and July 2022, whereas their signs and contributions are unrestricted for the rest of the
time period in Figure 5. Nevertheless, flow supply shocks clearly dominate fluctuations in
real gas prices throughout the entire episode. In July 2022, gas price growth would have
been 30% lower without the cumulative effect of negative flow supply shocks. In October
2022, when an increase in supply from other countries partially offset the lack of imports
from Russia, gas price growth would have been 30% higher without the cumulative effect
of positive flow supply shocks. In June–August 2022, positive storage demand shocks also
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Figure 5: Historical decomposition for 2020–2022.
Note: The black line is the deviation of the respective series from its unconditional forecast. The bars
depict the contribution of the shocks to this deviation.

exerted substantial upward pressure on real gas price growth, while a substantial part of
the relaxation in October 2022 is attributed to negative aggregate demand shocks. The
latter effects are consistent with the political decision to ramp up gas inventories prior to
the winter and successful measures to save on natural gas use by the German industry
in fall 2022, respectively.

The successful efforts of the German industry are also reflected by the robust devel-
opment of IP in the top-right panel. After a large drop in economic activity during the
COVID-19 pandemic, which is largely attributed to negative aggregate demand shocks,
IP swiftly recovered mostly due to positive aggregate demand shocks.13 From mid-2021
onward, increasingly negative effects of flow supply shocks offset the positive effects of

13Strong aggregate demand in the aftermath of the pandemic arguably reflects catch-up effects after
the relaxation of lock-down measures and supply-chain frictions as well as fiscal support measures (see,
e.g., Bachmann et al., 2021; Balleer et al., 2022).
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aggregate demand shocks and slowed down the recovery of the German industry. In 2022,
positive storage demand shocks exerted further downward pressure on IP, consistent with
the German parliament’s decision to ramp up gas inventories before the upcoming win-
ter. Until the end of our sample period, the combined negative effects of flow supply and
storage demand shocks were roughly offset by the positive cumulative effects of aggregate
demand shocks, and German IP remained close to its deterministic trend. The robustness
of IP during this energy crisis arguably reflects the successful attempts of the German
industry to reduce its dependence on natural gas in the face of political requirements
following the Russian invasion of Ukraine.14

While all structural shocks contributed to the draw-down of natural gas inventories in
2020, the SVAR model attributes the latter to a few negative aggregate demand shocks
and a series of negative storage demand shocks. In light of the drop in energy prices at the
start of the COVID-19 pandemic, economic agents arguably speculated on an extended
period of lower natural gas prices and therefore reduced inventory holding.

The historical decomposition in Figure 5 provides both a plausibility check of our
SVAR model during an important episode, where we can draw on narrative evidence,
and a quantitative analysis of the recent turmoil in the German natural gas market. Our
results suggest that, while the economy was hit by severe gas supply and demand shocks
leading to a dramatic price hike, the consequences for real economic activity were rather
modest, not unlike the theoretically founded predictions in Bachmann et al. (2022).

4 Structural Scenario Analysis

The benefit of our framework is that we can conduct structural scenario analyses along
the lines of Antolín-Díaz, Petrella, and Rubio-Ramírez (2021) by assuming hypothetical
realizations for one or more of the structural shocks and investigating the resulting time
paths of the endogenous variables. Subsequently, we consider the counterfactual scenario
of an embargo on gas imports from Russia starting in April 2022 and the importance of
a milder winter 2022/2023 for German gas inventories.

4.1 Russian gas embargo

In response to the Russian invasion of Ukraine on February 24, 2022, the U.S. government
and the European Council jointly with other governing bodies have adopted a number of
restrictive measures to weaken Russia’s economic base.15 As part of the “Fifth package
of sanctions in response to Russia’s invasion of Ukraine”, the European Council banned

14Relative to the 2018–2021 average, German industrial natural gas consumption was about 15% and
18% lower in 2022 and 2023, respectively (see Figure A.6 in Appendix A.1).

15The EU has also adopted sanctions against Belarus and Iran for their involvement in the invasion of
Ukraine and the supply of drones, respectively (see European Council).
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imports of coal and other fossil fuels from Russia on April 8, 2022. A ban on oil imports
from Russia was discussed and implemented in the form of a price cap at $60 per barrel
for crude oil and petroleum oils by the EU and the G7 member states on December 5,
2022. Although a ban on natural gas imports from Russia was also discussed by German
economists (e.g. Bachmann et al., 2022; Krebs, 2022), politicians, and the media, it was
not implemented before Russia itself throttled natural gas exports to Germany in June
and July and eventually suspended them altogether in September 2022.

Suppose instead that Germany had taken initiative and banned natural gas imports
from Russia as early as April 2022. A complete halt without immediate substitution would
have reduced German gas imports by 49%. Assuming that gas exports also decreased
by 49% and domestic production developed as actually observed in the data, German
natural gas supply would have dropped by 46.2%. In the SVAR model, this corresponds
to a one-off six unit negative flow supply shock in April 2022.16 Subsequently, we assume
parameter estimates for the full sample and realized monthly average temperatures for
2022:4–2023:3. Thus, we can compare conditional forecasts of the endogenous variables
both to the unconditional forecasts and to the realized data (up to December 2022).

Figure 6 plots the ‘Scenario’ forecast with and the ‘Baseline’ forecast without a six
unit negative flow supply shock in April 2022 against the data for each of the endogenous
variables. As intended, the negative gas supply shock leads to a substantial drop in the
monthly growth rate of gas supply relative to the baseline in April, followed by a slight
overshooting in May (top left panel). From June onward, both growth rates move closely
together. The actual data, in turn, reflect the gradual reduction of imports from Russia
in April through July, the temporary reactivation of Nord Stream 1 and Transgas in
August, and the final suspension of exports to Germany in September 2022 leading to
deviations from both the embargo scenario and the baseline forecast.

Consistently, the scenario forecast implies substantial upward pressure on gas price
growth relative to the baseline forecast in the period of the shock (bottom left panel). In
the data, a similar price increase is visible, but three months later than in the embargo
scenario forecast. According to the historical decomposition in Figure 5, this reflects the
unfortunate combination of negative supply shocks due to the Russian cuts of gas exports
to Germany and positive storage demand shocks due to the political decision to ramp up
German gas inventories prior to the start of the heating season.

In the embargo scenario forecast, industrial production (top right panel) would have
dropped in April 2022 compared to the baseline forecast, although the latter is included
in the 68% posterior credibility set of the former. In the following months, the paths of IP
in the embargo scenario and the baseline forecast are similar, and the actual data is inside
the 68% posterior credibility set of the scenario forecast. This reflects our earlier finding

16Month-on-month reductions in German natural gas supply of 20% or more occur on at least ten
occasions during our sample period (see Figure A.2 in Appendix A.1).
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Figure 6: Conditional forecasts for a Russian gas embargo starting in April 2022
Note: Point-wise median conditional forecasts with 68% posterior credibility sets based on the SVAR
identified by conventional and narrative sign restrictions

that supply effects on economic activity are short-lived and moderate in comparison with
price effects, as illustrated by the impulse response functions in Figure 2.

Both the embargo scenario and the baseline forecast track actual changes in natural
gas inventories (bottom right panel) up to July 2022. Starting in August, gas inventories
increased strongly due to the concerted attempt to fill underground storages (see Figure
A.1) leading to strong deviations from the embargo scenario and the baseline forecast.

4.2 The role of temperature

In the media as well as the reports of economic and policy institutions (see, e.g., Joint
Economic Forecast, 2022; Deutsche Bundesbank, 2022), the risk of a natural gas shortage
in Europe and Germany, in particular, was repeatedly linked to the severity of the winter
2022/2023. The SVAR model in (1) accounts for seasonal variation in the form of monthly
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Figure 7: Conditional forecasts for average and actual monthly temperatures for April 2022
through March 2023
Note: Point-wise median conditional forecasts with 68% posterior credibility sets based on the SVAR
identified by conventional and narrative sign restrictions

dummies as well as average monthly temperatures. We can therefore investigate whether
different temperature scenarios indeed imply substantially different time paths of the
endogenous variables.

Figure 7 plots the actual monthly temperatures for April 2022 through March 2023
against sample averages as well as point-wise median forecasts and 68% posterior credible
sets of natural gas market variables based on the model with narrative sign restrictions
conditional on these temperature paths. To facilitate interpretation, the effect on gas
supply and gas price is cumulated to levels in terra joules (TJ) and percent, respectively,
while the effect on gas inventories is converted to a fraction of German capacity.17

From the first panel of Figure 7, temperatures were consistently higher in April 2022
through March 2023 than on average during our sample period. The second panel shows
that higher average monthly temperatures implied a cumulated reduction of gas supply by
2,000 TJ during the same period. Higher temperatures also resulted in up to 5 percentage
points lower gas prices in the second half of the forecast horizon. Most importantly, we
find that gas inventories would have been about 18% (of full capacity) lower in a year with
average monthly temperatures. Given that German gas inventories were down to 25% of
full capacity in March 2022 (see Figure A.1), differences in average monthly temperature
indeed seem to account for a non-trivial part of the variation in inventories. This finding
lends ex-post empirical support to the political decision in April 2022 to ramp up German
gas inventories before the start of the winter.

While the temperature-dependent conditional forecasts of gas supply and real gas price
are quantitatively, albeit not statistically different, the last panel of Figure 7 indicates that

17Note that gas inventories enter the model as a percentage of the previous month’s gas supply. To
convert this into percent of capacity, we compute the conditional forecast of gas supply in TJ over the
forecast horizon. We then compute the conditional forecast of gas inventory changes in TJ and cumulate
over the forecast horizon. We finally convert TJ to MWh (1 TJ = 277.778 MWh) and divide by the total
capacity of 230 million MWh of the 47 gas storage facilities located in Germany (see ENBW, 2020).
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natural gas inventories were also statistically higher due to milder-than-average monthly
temperatures between April 2022 and March 2023.

4.3 Disruption of Europipe I and II

As of 2023, Germany is relying on natural gas imports from Belgium, the Netherlands,
and Norway as well as a slowly increasing capacity of LNG import terminals. Europipe
I and II, which transport gas from Norway to Germany, accounted for 19.8% and 21.7%,
respectively, of natural gas imports on average between July and December 2022.18 Along
the German coast, however, Europipe I and II run next to each other in shallow water,
making them susceptible to targeted disruptions.19

For the same export and production assumptions as in the Russian gas embargo sce-
nario, a disruption of natural gas imports from Norway corresponds to a drop in German
gas supply by 17.6% (Europipe I), 19.3% (Europipe 2), or 36.9% (both). Accordingly,
we analyze a structural scenario, in which we subject the SVAR model to a one-off four
unit negative flow supply shock. We simulate this shock in January 2023 to trace out the
effects over a full year, but any other starting point would lead to similar effects.

Figure 8 plots point-wise median conditional forecasts with 68% posterior credible
sets of German gas supply, industrial production, gas import price, and gas inventories
using the same transformations as in the temperature scenario without (dashed lines)
and with (solid lines) the shock. The left panel illustrates the immediate drop in the
level of gas supply due to the hypothetical disruptions of imports from Norway, which
leads to an immediate increase in the real gas price by about 25% relative to the baseline,
which persists over the rest of the forecast horizon. Nevertheless, the negative gas supply
shock has only a moderate effect on IP on impact, which largely disappears before the
end of the forecast horizon. In the first few months, gas inventories are actually 2% (of
total capacity) higher than in the baseline, given that negative flow supply shocks tend
to induce higher prices and saving efforts rather than a draw-down of inventories during
our sample period (see Figure 2). During the second half of the forecast horizon, this
relation reverses, albeit only temporarily.

In contrast to the temperature scenario in Figure 7, the conditional forecasts are
statistically different for gas supply and, in particular, real gas price, whereas the posterior
credibility sets for gas inventories overlap for much of the forecast horizon. Especially
the latter finding of small or even positive effects on inventories must be taken with a
grain of salt. Despite a number of non-trivial gas supply disruptions during our sample
period, Germany was generally able to draw on alternative sources of imports or reduce

18See Figure A.3 in Appendix A.1 for details.
19In May 2023, UK Defence Secretary Ben Wallace and Norwegian Defence Minister Bjørn Arild

Gram signed a security partnership to increase cooperation on undersea capabilities and counter threats
to undersea infrastructure (www.gov.uk), signaling increased political awareness of related risks.
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Figure 8: Conditional forecasts for a disruption of Europipe I and II in January 2023
Note: Point-wise median conditional forecasts with 68% posterior credibility sets based on the SVAR
identified by conventional and narrative sign restrictions

its own exports. In the current situation, where Belgium, the Netherlands, and LNG are
the only remaining outside options, it is unlikely that savings and substitution of natural
gas will be equally smooth as in the past.

5 Robustness to Time-Varying Parameters

The recent turmoil in the German natural gas market raises the question whether a linear
model is appropriate to capture the dynamics of the endogenous variables over the entire
sample period. In particular, one might argue that larger shocks and higher prices than
previously observed have affected the behavior of economic agents and thus the structural
parameters of interest (a.k.a. the “Lucas critique”). In this case, our empirical results and
structural scenario analyses based on a linear model estimated for the full sample would
be inconsistent.

To allow for the possibility of parameter instability, we specify a time-varying param-
eter (TVP) version of our model with stochastic volatility (SV) and estimate it using
the quasi-Bayesian approach of Petrova (2019). The latter is particularly suited for our
purpose, given that it flexibly allows for both gradual and abrupt parameter change. The
key idea of this approach is to derive a period-specific likelihood function by re-weighting
each observation such that observations closer to the period under consideration receive a
higher weight, whereas distant observations are down-weighted. The decay of weights is
governed by a kernel and its bandwidth. We follow Petrova (2019) and Giraitis, Kapetan-
ios, and Yates (2014), who use a normal kernel with bandwidth

√
T , where T denotes the

sample size. This is asymptotically optimal (in terms of MSE minimizing) and results in
assigning non-zero weights to about fifteen years of observations.20

Figure 9 plots the IRFs based on the TVP-SV-VAR model evaluated in May 2008
(black dotted lines), August 2014 (red dashed-dotted lines), and July 2022 (orange dashed

20For details, see Appendix A.2 or Petrova (2019).
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Figure 9: Impulse response functions based on constant-coefficient and TVP-SV-VAR models
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based on the TVP-SV-VAR model in Appendix A.2.

lines) against those for our baseline specification (blue solid lines and shaded areas). It
is important to note that, for the first two sets of IRFs, observations associated with the
energy crisis of 2022 receive a weight of zero, while we impose the same narrative sign
restrictions as in the linear model.

Qualitatively, the IRFs from either model are rather similar, indicating that parameter
instability is only a second-order concern. Quantitatively, the stronger flow supply shocks
(i.t.o. of the drop in gas supply) estimated at the end of the sample, also induce a stronger
response of gas prices and inventories, whereas the effects on industrial production are
of similar magnitude. The impulse responses of gas supply, prices, and inventories to an
aggregate demand shock seem to become more immediate and less persistent towards the
end of the sample. Finally, storage demand shocks imply qualitatively and quantitatively
similar responses of the endogenous variables in May 2008, August 2014, and July 2022.

With few exceptions, the IRFs based on the TVP-SV-VAR evaluated at different
points in time fall within the point-wise 68% posterior density intervals based on the
linear model estimated for the full sample. Accordingly, the empirical results in Section
3 and the scenario analyses in Section 4 are unlikely to be subject to the Lucas critique.

6 Conclusion

We propose a structural VAR model to disentangle the role of supply and demand shocks
in the German natural gas market and conduct structural scenario analyses. The model
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succeeds in explaining most of the variation in key variables based on the structurally
identified shocks. Our estimates suggest that (i) supply and demand shocks have large
and persistent price effects but moderate and short-lived output effects, (ii) the natural
gas price hike of 2022 was largely driven by the Russian suspension of exports to Germany
and the simultaneous attempt to ramp up gas inventories before the start of the winter,
(iii) an immediate embargo on natural gas imports from Russia in April 2022 would have
merely precipitated a price increase of similar magnitude, and (iv) a milder-than-average
year helped substantially to maintain a robust inventory base throughout the last winter.
Finally, we do not find strong evidence of time-varying parameters and thus different
effects of natural gas supply and demand shocks at the end of our sample period.

In light of the recent disruptions of European natural gas markets, we build on SVAR
tools developed for analyzing the global market for crude oil and apply state-of-the-art
econometric methods to answer pressing questions. We thus provide empirical evidence
that substantiates the political debate in similar situations. Given the backward-looking
nature of our econometric approach, it should be clear that structural changes in the
German gas market at the end of the sample period, such as the current expansion of
LNG capacities or shifts in behavioral regularities and seasonal patterns, are incorporated
only to a limited degree. Monitoring the role of these changes is left for future research.
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Appendix

A.1 Additional Figures
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Figure A.1: Use of German natural gas storage capacity for October 2021 through April 2023
Source: Bundesnetzagentur
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Figure A.2: Data on German natural gas supply growth, industrial production, real gas price
growth, and gas inventories for 1999:2–2022:12
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Figure A.3: Daily German natural gas import flows for selected pipelines
Sources: European Network of Transmission System Operators for Gas (ENTSO-G), German Statistical
Office
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Figure A.4: Historical decomposition of German industrial production for 2000:2–2018:12
Note: Dashed lines show deviations of actual data from the deterministic trend. Solid lines show the
contribution of each shock to the deviation from the deterministic trend.
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Figure A.5: Historical decomposition of changes in natural gas inventories for 2000:2–2018:12
Note: Dashed lines show deviations of actual data from the deterministic trend. Solid lines show the
contribution of each shock to the deviation from the deterministic trend.
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Figure A.6: Natural gas use by German industry in 2022 and 2023 relative to 2018–2021 average
Source: Bundesnetzagentur
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A.2 Details on the Time-Varying Parameter VAR

Subsequently, we provide details on the quasi-Bayesian estimation of The TVP-SV-VAR
following Petrova (2019). The model reads as follows:

yt = ct +

p∑
i=1

Bi,tyt−i + ut, ut = R
−1/2
t εt, εt ∼ N(0, IN). (A.1)

Defining xt = (1, y′t−1, . . . , y
′
t−p) and Bt = (ct, B1,t, . . . , Bp,t) allows to write the model as:

yt = (IN ⊗ xt)βt +R
−1/2
t εt, (A.2)

θt =
[
βt vech(R

−1/2
t )

]′
. (A.3)

If θ satisfies either of the following conditions, the sequence of time-varying parameters
moves slowly over time, which is a sufficient property for consistent estimation:

(i) θt is a deterministic process θt = θ(t|T ), where θ(·) is a piecewise differentiable
function.

(ii) θt is a stochastic process satisfying: supj:|j−t|<h||θt − θj||2 = Op(h|t) for 1 ≤ h ≤ t

for t → ∞.

The local likelihood function of model (A.1) for each period j is given by:

φT,j(θj) =
T∑
t=1

ϑj,tlt(yt|yt−1, θj), for j, t ∈ {1, . . . , T}, (A.4)

where lt(yt|yt−1, θj) is the conditional log-density for observation t and ϑj,t reweighs the
likelihood of the observations (y1, . . . , yT ). For j, t ∈ {1, . . . , T}, these weights are com-
puted using a kernel function:

ϑj,t = κj,tωj,t, ωj,t = ω̃j,t

T∑
t=T

ω̃j,t, ω̃j,t = K

(
j − t

H

)
, κj,t =

(
T∑
t=1

ω2
j,t

)−1

, (A.5)

K(·) is a non-negative, continuous, and bounded kernel function with bandwidth param-
eter H, satisfying H → ∞ and H = o(T/ log T ).21 The kernel function reweighs the
model’s log-likelihood function at each period j. The decay of the weights is determined
by H. The higher the value for H, the slower the weights of the weights decay. Combining
the local likelihood function with a Normal-Wishart prior for βj and Rj:

p(βj|Rj) ∼ N(β
j
, (Rj ⊗ κj)

−1), p(Rj) ∼ W (αj, γ
−1

j
), for j ∈ {1, . . . , T}, (A.6)

21In the case of a Normal kernel, the weights are given by: ωj,t = 1√
2ϕ

exp((−1
2 )(j − t)/H2) for

j, t ∈ {1, . . . , T}.
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gives rise to a Normal-Wishart quasi-posterior for βj and Rj:

p(βj|Rj, X, Y ) ∼ N(βj, (Rj ⊗ κ)−1), p(Rj|Y,X) ∼ W (αj, γ
−1
j ), for j ∈ {1, . . . , T},

(A.7)

where, for j ∈ {1, . . . , T}, the posterior parameters are defined as follows:

βj = (IN ⊗ κ−1
j )[(IN ⊗X ′DjX)β̂j + (IN ⊗ κj)βj

], (A.8)

κj = κj +X ′DjX, (A.9)

αj = αj +
T∑
t=1

ϑj,t, (A.10)

γj = γ
j
+ Y ′DjY + cjκjc

′
j −BjκjB

′
j, (A.11)

Dj = diag(ϑj,1, . . . , ϑj,T ), (A.12)

and β̂j = (IN ⊗ X ′DjX)−1(IN ⊗ X ′Dj)y is the local likelihood estimator for βj derived
by Giraitis et al. (2014).
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