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Abstract

The unprecedented increase in power conversion efficiency (PCE) of low‐cost
organo‐inorganic halide perovskite solar cells (OIHPSCs) toward its Shockley‐
Queisser limit intriguingly has prompted researchers to investigate the

disadvantages of these devices. The issue of operational stability is the main

hurdle challenging the way forward for commercialization. To address this,

various engineering processes like composition, additives, anti‐solvents, bulk
and interface passivation, and deposition techniques have been widely applied

to manage both extrinsic and intrinsic factors that induce degradation of the

OIHPSCs. In this work, we employed interface passivation, which is an

efficient approach to reduce nonradiative recombination. An ultrathin layer of

electron donor diketopyrrolopyrrole‐oligothiophene copolymer (DPP860) was

applied as an interface passivator between the photoactive layer and [6,6]‐
phenyl C61 butyric acid methyl ester (PCBM). The role of the interface

passivation on optoelectronic properties of the OIHPSCs was assessed using

current density versus voltage (J‐V) characteristics, photoluminescence

spectroscopy and time‐resolved photoluminescence spectroscopy. The findings

show devices treated with DPP860 exhibit enhanced current density (Jsc) and

fill factor, attributing for suppressed nonradiative recombination. Moreover, it

shows relative improvement in the stability of the device. The results of this

finding reveal that using oligothiophene copolymer can enhance the

photovoltaic performance and the stability of inverted OIHPSCs in the

ambient environment.

Energy Sci. Eng. 2024;1–12. wileyonlinelibrary.com/journal/ese3 | 1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2024 The Authors. Energy Science & Engineering published by Society of Chemical Industry and John Wiley & Sons Ltd.

http://orcid.org/0000-0002-2863-1379
mailto:getachew.adam@aastu.edu.et
https://onlinelibrary.wiley.com/journal/20500505
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fese3.1745&domain=pdf&date_stamp=2024-04-09


financial, materials and laboratory
support KEYWORD S

interface passivation, nonradiative recombination, organo‐inorganic halide perovskite solar
cells, power conversion efficiency, stability

1 | INTRODUCTION

Low‐cost solar energy converting devices have a signifi-
cant role in achieving the access to affordable clean
energy goal of Sustainable Development. Cost lowering is
mainly dependent on the processing cost of a solar cell.
Nowadays, fast‐growing and low‐cost solution‐processed
OIHPSCs have drawn the attention of many researchers
due to their high performance and flexibility to satisfy the
strong energy demand.1,2 This is ascribed to excellent
optical and electrical characteristics, such as direct band
gap, high light absorption coefficient, high charge carrier
mobility, long charge carrier diffusion length, and long
electron‐hole recombination lifetime.3–5 Even though
their indoor performance is promising, they degrade in
ambient conditions. Consequently, different strategies
such as compositional, additive, interface, and passiva-
tion engineering and various deposition techniques have
been widely used to overcome extrinsic and intrinsic
factors which affect the performance and stability in the
ambient environment.6–10

The communication barrier between different layers
due to interface nonradiative recombination could have a
substantial negative impact on the performance and
stability of the OIHPSCs.11 Thus, interface engineering
using either organic or inorganic compounds has
emerged as the promising approach to solve such issues
to commercialize OIHPSCs.12–14 This strategy could help
to tune electronic properties, viz. energy level align-
ment,15 form interface dipole,16 passivate charge trapping
centers (defects),17 and prevent infiltration of moisture.18

Thus, organic polymers that contain different functional
groups like thiol, carbonyl, carboxyl, hydroxyl, ethers and
amine, have dual effects. Prominently, they act as Lewis
base additives to bind specifically with uncoordinated
Pb2+ during OIHP solution formation.19,20 They could
also form hydrogen or halogen bonds with organic
monocation or halides of the OIHP. Their integration as
an additive retards the crystallization of lead halides
(PbX2) and facilitates the formation of a homogeneous
solution.21 As a result, the morphology of the OIHP thin
films could be improved. Moreover, it improves the
crystallinity and grain size of the film, and film coverage,
which suppresses the formation of charge trap centers
and hysteresis.22 On the other hand, they passivate the
bulk and interface defects which induce nonradiative
recombination. This strategy has a substantial effect on

preventing the diffusion of ions across a grain boundary
and suppressing nonradiative recombination across the
interface.23

The power conversion efficiency and stability of the
OHHPSCs may be greatly increased by enhancing
smoothness and surface coverage of the photoactive
and charge transport layers. Solution‐processed PCBM
has been applied as the most common electron‐
transporting material in inverted (p‐i‐n) OIHPSCs.
However; it is censured due to its low film coverage,
low electron mobility, and conductivity.24,25 In this
work, diketopyrrolopyrrole‐oligothiophene copolymer
(DPP860),26 is used as the interface passivator between
OIHP and PCBM to mitigate the interface defects. The
findings from dark current, photoluminescence (PL),
time‐resolved photoluminescence (TRPL), and
intensity‐modulated photovoltage (IMV) measure-
ments show that nonradiative recombination is mini-
mized due to passivation. Specifically, interface passi-
vation using DPP860 unveil eminent improvement in
short current density (Jsc) and fill factor of the
fabricated OIHPSCs which is attributed to the contri-
bution of DPP860 in facilitating electron injection from
OIHP layer to PCBM. The results, which are extracted
from the maximum power point tracking (MPPT)
measurement, also indicate the enhancement of
operational stability in the ambient environment for
devices with interface passivation. This confirms
DPP860 is a good candidate to minimize interfacial
defects of OIHPSCs.

2 | EXPERIMENTAL DETAILS

2.1 | Materials and perovskite solution
preparation

Methylamine (33 wt %, in absolute ethanol; Sigma
Aldrich), hydroiodic acid (HI (aq), 57 wt %; Sigma
Aldrich), diethyl ether (VWR Chemicals), and ethanol
(absolute. MERCK) were used to synthesize and purify
methylammonium iodide (MAI) according to the litera-
ture.27 TiOx sol‐gel is also synthesized based on the
procedure reported by Park et al.28 The solution of
MAPbI3 was prepared by mixing defined molar ratios of
lead halides and methyl ammonium iodide in a 1:1:4 mol
ratio of PbI2, PbCl2, and MAI, respectively.29 Then, the
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mixture of the precursors were dissolved in DMF
containing 10.0% acetyl acetone (AA) as the solvent
additive, and was stirred overnight at about 45°C.30

Finally, the prepared solution was ready for device
fabrication after filtering using a 0.45 µm polytetrafluor-
oethylene (PTFE) filter.

2.2 | Device fabrication

ITO‐coated glass substrates were cleaned by using Hellma-
nex surfactant, deionized water, acetone, and isopropanol
(IPA), respectively, for about 20min of each step in an
ultrasonic bath. The cleaned substrate was dried with
nitrogen gas (N2). PEDOT:PSS (Clevios PH1000) solution
was prepared by adding 7% dimethyl sulfoxide (DMSO) and
0.7% Zonyl® FS‐300 fluorosurfactant and it was mixed well
to enhance the conductivity.31 It was spin‐coated as the
hole transport layer (HTL) at 1250 and 2000 rpm for 45 s
and annealed at 120°C for 15min. The films were washed
by IPA at 2000 rpm for 2 s and 4000 rpm for 10 s and
annealed for 15min at 120°C. After cooling the PEDOT:PSS
films to room temperature, the filtered solution of
perovskite (MAPbI3) using 0.45 µm polytetrafluoroethylene
(PTFE) filter was spin‐coated at 1250 rpm for 17 s and
2000 rpm for 5 s on the top of the hole transport layer. The
samples were kept on stand for 1min before being
transferred to the hot plate and annealed for 30min at
110°C. Subsequently, different concentrations of
diketopyrrolopyrrole‐oligothiophene copolymer (DPP860)
solution (0.3, 0.7, and 1.0mgmL−1) in chlorobenzene (CB)
were prepared and spin‐coated on top of the OIHP layer as
capping layer at 5000 rpm for 30 s to find the optimal
thickness. Then after, 20mgmL−1 of PCBM solution in
chlorobenzene and chloroform (1:1) volume ratio was spin‐
coated on top of the DPP860 thin layer as electron transport
layer (ETL) at 1250 rpm for 16 s and 2000 rpm for 15 s.
Henceforth, TiOx sol‐gel was spin‐coated on the top of the
ETL at 5000 rpm for 30 s and annealed at 107°C for 7min
as a buffer layer. All above procedures were carried out in
an ambient environment and finally, inverted perovskite
solar device configuration: (ITO/PEDOT:PSS/MAPbI3/
DPP860/PCBM/TiOx/Al) was completed by thermal eva-
poration of ~110 nm aluminum back contact.

2.3 | Characterization

The thickness of different layers was measured by the
profilometer (Bruker Dektak.XT). Ossila Contact Angle
Goniometer (L2004A1) were used to carry out the
contact angle measurements of the OIHP films at room
temperature using 18MΩ ultra‐pure water.

Fourier transform infrared spectroscopy (FTIR) spec-
tra were collected by the FTIR spectrometer (Bruker
Vertex‐80). X‐ray photoelectron spectroscopy (XPS)
measurements were extracted by theta probe X‐ray
photoelectron spectrometer (Thermo Fisher Scientific).
As the x‐ray source, the system uses a monochromated
Al‐Kα source with energy of 1486.6 eV. The spot
diameter on the sample surface is 400 µm. For high‐
resolution (HR) scans, pass energy of 20 eV and an
energy step size of 0.05 eV were used at the hemispheri-
cal analyzer. A dual flood gun which provides low‐
kinetic energy electrons and Ar+ ions was used for
charge compensation on the sample. Data acquisition
and evaluation is performed via the Avantage software
(Thermo Fisher Scientific). The smart background
correction function in the Avantage software was used
for background correction of HR‐XPS spectra and is
based on a modified Shirley background function. To
correct charging, the binding energies of all spectra were
referenced to the values of the Pb4f7/2 binding energy of
Pb(0) artifacts at 136.5 eV.32

Absorbance, transmittance, and reflectance of MAP-
bI3 thin films with and without the DPP860 interface
passivation layer were recorded by a UV‐Vis‐NIR
spectrometer (Perkin Elmer Lambda 1050). Tungsten
and deuterium lamps are used as a light source to
provide a wide range of wavelength from 150 to
3100 nm. The surface morphology of the films was
characterized by using Bruker Innova atomic force
microscopy (AFM) and scanning electron microscopy
(SEM). Photoluminescence spectra of sample films were
measured using a Shamrock SR‐303i monochromator
and an AndorTM iDus Si‐CCD detector. Samples were
excited at 488 nm with 5 mW power using a COHER-
ENT OBIS 488‐150 LS laser. A set of long‐pass filters
was used to avoid any distortion of the recorded spectra
by the laser light. Time‐resolved photoluminescence
measurements were performed using time‐correlated
single photon counting (TCSPC). The setup for TCSPC
measurements consists of a DeltaNu DNS‐300 mono-
chromator (slit widths: 3 mm), a Becker & Hickl SPC
150 TCSPC module, and a PMC‐100‐1 photomultiplier.
As an excitation light source, the setup uses a NKT
Photonics SuperK FIANIUM FIU‐15 with a pulse
picker, connected to a Photon Etc LLTF Contrast VIS
wavelength selection unit.

To characterize the photovoltaic (PV) performance of
the perovskite solar cells photocurrent density‐
photovoltage (J‐V) response was measured by using
Keithley‐2400‐LV source meter. A LOT‐QD solar simula-
tor with a 1000W xenon lamp providing AM1.5 global
spectrum was used for irradiation. The intensity of the
solar simulator was calibrated by the silicon reference
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diode. The dark current density (JD)‐voltage response of
hole‐only devices was measured using Keithley‐2400‐LV
source meter to get the space‐charge limited current
(SCLC) curves.

The external‐quantum efficiency (EQE) was measured
by using an optical setup consisting of a lock‐in amplifier
(SR830; Stanford Research Systems) and a Jaissle 1002
potentiostat functioning as a preamplifier. Devices were
illuminated with light from a xenon lamp passing through a
monochromator (Oriel Cornerstone)). A filter wheel holding
long‐pass filters and a mechanical chopper were mounted
between the xenon lamp and a monochromator with
chopping frequencies in the range of 10‐200Hz was chosen.
The silicon diode (Hamamatsu S2281) was used as a
reference for the light intensity at each wavelength to
calibrate in a range between 10 and 200Hz.

Intensity‐modulated photovoltage spectroscopy
(IMVS) measurements were executed at Voc conditions
under illumination with 10% light‐modulated amplitude
to gain insight on the recombination dynamics in devices
with and without DPP860 passivation. The parameters
were set to measure the perturbed Voc which is DC‐
voltage with 10% light intensity perturbation in the
frequency range from 1MHz to 50mHz by using the
PhotoEchem software. Then, the values of LED light
intensity were set by the program to vary the intensity by
controlling the current applied to the LED source.

3 | RESULTS AND DISCUSSION

3.1 | Chemical analysis

Infiltration of the moisture to the OIHP thin films has
been pointed out as one of the extrinsic factors which
degrade the photoactive layer.33 To mitigate such
problems, moisture‐resistant molecules or polymers have
been widely used as the interface passivators.34 They also
serve as the barrier for the either ion or electrode
diffusion to the charge transporting or photoactive
layers35 We employed diketopyrrolopyrrole‐based poly-
mer (DPP860), as a ultra‐thin layer between photoactive
and PCBM layers (Figure 1A). To assess the degree of the
hydrophobicity improvement, contact angle measure-
ment was used for OIHP thin films with and without
DPP860. The result shows that films covered with
DPP860 exhibit higher contact angle than the pristine
film, indicating the increment of hydrophobicity due to
DPP860 treatment (Figure 1B). In addition to this,
interface passivation may form interface dipoles which
facilitate the injection of electrons by minimizing
interface‐induced nonradiative recombination.11,36 Fou-
rier transform infrared (FTIR) technique was used to
study the existence and interaction of DPP860 on the
surface of OIHP thin films. On this point, FTIR analysis
(Figure 1C) reveals the formation of two new peaks at

FIGURE 1 (A) Chemical structure of DPP860. (B) Contact angle measurement and schematic structure of perovskite films without
(top) with DPP860 coating (bottom). (C) FTIR spectra and characteristic XPS peaks for (D) Pb4f and (E) I3d of perovskite films with and
without DPP860 passivation.
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1521 cm−1 (–C‐N stretching) and 1506 cm−1 (N‐H bend-
ing) when DPP860 is spin‐coated on top of the HOIP thin
films.37 This shows that there is an interaction between
OIHP thin films and the interface passivator, DPP860.
XPS measurements were also carried out to investigate
chemical interactions between OIHP thin films and
DPP860. As it is shown in Figure 1D, XPS spectra do not
show a notable shift in binding energy of Pb2+ which
confirms the insignificant chemical interactions between
functional groups of the interface passivating polymer
and Pb2+. But XPS spectra in Figure 1E shows that there
is a slight shift to lower binding energy, which suggests
the presence of chemical interactions between I− and
DPP860. Supporting Information S1: Figure S1a‐f and
Table S1 also show additional peaks of C1s, O1s and N1s
and a change in peaks shape after DPP860 coated on top
of the OIHP thin films. All findings from contact angle,
FTIR, and XPS measurements prove that different types
of interactions take place at the surface of the perovskite
layer treated with the DPP860 passivator.

3.2 | Optoelectronic responses

Inverted planar OIHPSCs containing a capping layer,
DPP860, between OIHP and phenyl‐C61‐butyric acid
methyl ester (PCBM) layers were fabricated (Figure 2A).
It is well‐known that defected interfaces are serving as
the trapping or recombination centers of charge carri-
ers.38 So it is important to have a proper energy level
alignment along each interface as shown in Figure 2B to
avoid trapping or recombination which affects the whole
performance and affects the long‐term stability of the
OIHPSCs.39,40 Regarding to this, the DPP860 which was
known in the literature as electron donating polymer in
organic solar cells, was used as the interface passivating

thin layer in between the OIHP and PCBM layers to
reduce the trapping or recombination rate. Moreover, it
prevents ingression of moisture toward photoactive layer
as the hydrophobic layer and insulation of metal
electrode due to diffused halide ions.

UV‐visible spectroscopy measurements were used to
study the role of the DPP860 coating on the absorbance
of the photoactive layer. The lowest transmittance
spectrum is observed for OIHP films coated with
DPP860 passivating layer (Figure 3A). In view of that,
passivating the interface between PCBM and absorber
layers could increase the photoabsorption. Likewise, the
dark current of the OIHPSCs was recorded to extract
current leakage, which is associated with the degree of
charge trapping density in a device (Figure 3B). Various
important electrical parameters, such as shunt resistance
(Rsh) and ideality factor (nid), of the OIHPSCs across the
hetrojunction at low voltage can be extracted from this
curve.41,42 The obtained smaller leakage current of the
passivated device assures that charge trap densities at the
interface of CH3NH3PbI3 and PCBM are reduced, which
ascribes that nonradiative recombination is curtailed.
Consequently, high Rsh, small dark currents and low nid
as a result of minimized defect density of the passivated
device are vibrant variables to improve the current
density (Jsc), fill factor (FF) and thus the PCE of the
device.

Space‐charge‐limited current (SCLC) characteristics
of hole‐only devices having device structure of glass/ITO/
PEDOT:PSS/CH3NH3PbI3/poly(bis(4‐phenyl)(2,4,6‐trim-
ethylphenyl)amine (PTAA)/Al and Glass/ITO/PED-
OT:PSS/CH3NH3PbI3/DPP860/PTAA/Al were assessed
to compare the trap density (Figure 3C,D). The three
regions: ohmic (n= 1), trap filled limited (TFL) (n> 3),
and space charge limited current (SCLC) (n= 2) are
indicated.5,43 Accordingly, the onset voltage at which the

FIGURE 2 (A) schematics of passivated OIHPSCs with p‐i‐n configuration (B) Interfaces in p‐i‐n OIHPSCs (1) anode/HTL, (2) HTL/
Perovskite, (3) Perovskite/ETL, and (4) ETL/Cathode.
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traps are starting to fill by holes in the hole only devices
with interface passivation exhibit a lower VTFL of 0.73 V
compared to 1.25 V for control devices. The trap
density of the device is calculated using an equation,44

(nt = (2εoεVTFL/eL
2), where εo is the vacuum permittivity

constant, ε is the relative dielectric constant of MAP-
bI3,

45 (ε= 32.2), e is the elementary charge and L the
thickness of the photoactive layer. Quantitatively,
devices without and with DPP860 passivator exhibit
trap densities of ~1.47 × 1016 cm−3 and ~9.3 × 1015 cm−3,

respectively, indicating devices with passivators contain
reduced defect density by one order. This could be
attributed to the passivation of the defects across the
interface. In other words, passivation enhances the
efficiency of the hole extraction across the interface
between CH3NH3PbI3 and PCBM.

Based on the fundamental principle that a good solar
cell is also a good light emitter,46 the radiative emission
processes of the OIHP were studied to explore the role of
the DPP860 coating on the CH3NH3PbI3 layer. Here,

FIGURE 3 Optoelectronic response of CH3NH3PbI3 perovskite with and without DPP860 passivation. (A) UV‐Vis transmittance of
perovskite films. (B) Semi‐log plot of dark current density‐voltage characteristics, and (C and D) space‐charge‐limited current (SCLC) of hole
only device without and with DPP860, respectively. (E) Steady‐state photoluminescence (PL), and (F) time‐resolved photoluminescence
(TRPL) spectra of films with and without DPP860 treatment.

6 | ABICHO ET AL.
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three independent processes can ensue after photogen-
erated charge carriers are excited, viz. bimolecular
(radiative) recombination, monomolecular (trap‐
assisted) recombination, and charge extraction.47 Hence,
low bimolecular and monomolecular recombination, and
high charge extraction processes have yielded better
performance for the OIHPSCs. To compare the degree of
the monomolecular or bimolecular recombination pro-
cess or charge extraction, photoluminescence properties
of the different devices which have the glass/ITO/
PEDOT:PSS/OIHP/and glass/ITO/PEDOT:PSS/OIHP/
DPP860 structures were measured (Figure 3E). The
steady‐state photoluminescence spectra were measured
by exciting samples with a 488 nm COHERENT OBIS
488‐150 LS laser. The results show bimolecular (radia-
tive) recombination processes are dominant in the
structure which was interface passivated by DPP860.
Interestingly, the results support that the amount of
photogenerated electrons which could be injected to the
PCBM may be increased after the excitation of electrons
from DPP860 coated photoactive layer. The PL peak
intensity increased for the corresponding films coated
with 1.0, 0.3 and 0.7 concentrations (mgmL−1) of
DPP860, respectively (Supporting Information S1:
Figure S2). Perovskite films coated with 0.7 mgmL−1 of
passivator show the highest PL emission peak. On the
contrary, it could be decreased for the mentioned
concentrations due to quenching of photogenerated
charge carried by PCBM. Thus, the aforementioned
findings clearly signify that spin‐coating DPP860 as the
passivation layer on top of the CH3NH3PbI3 layer
decreases the strength of bimolecular and mono-
molecular recombination processes while more photo-
generated charge carriers are extracted by PCBM.48

Moreover, the results strengthen that DPP860 effectively
passivates interfacial defects at the interface between
CH3NH3PbI3 and PCBM.

Additionally, time‐resolved photoluminescence data
were also collected to find out the impact of thin layer of
DPP860 as an interface passivator in reducing nonradia-
tive recombination (Figure 3F).49 The data of the TRPL
curves are well fitted with a bi‐exponential decay
equation of f(t) =A1exp(−t/τ1) +A2exp(−t/τ2) + B, where
τ1 and τ2 are the decay time constants, while A1 and A2

are the corresponding decay amplitudes and B is a
constant for the base‐line offset.50 The average decay
time constant τavg was calculated according to Equation
(1). τ1 and τ2 are strongly related to the monomolecular
(trap‐assisted) recombination and bimolecular (radiative)
recombination, respectively.51,52 With respect to τ1,
Figure 3F and Table 1 substantiate that it is longer for
the interface passivated films, attributes to the low trap
assisted recombination. Similarly, longer slow decay life

time (τ2) for 0.7 mgmL−1 DPP860 coated photoactive
layer is related to bimolecular recombination which
ascribes the production of more photogenerated charge
carriers from the CH3NH3PbI3 layer.51 Moreover, the
average decay lifetime results (Table 1) reveal that trap‐
assisted recombination processes are less dominant in
DPP860‐coated films compared to the control device. The
findings of the TRPL investigation are compellingly
consistent with the steady‐state photoluminescence
spectra. Furthermore, topographic morphology analysis
using atomic force microscope (AFM) and scanning
electron microscopy (SFM) confirms that the changes in
morphology due to DPP860 passivation is insignificant
(Supporting Information S1: Supplementary note‐1 and
Figure S3).

τ
A τ A τ

A τ A τ
=

+

+
.avg

1 1
2

2 2
2

1 1 2 2

(1)

3.3 | PV responses characterization

It is well known that the extraction of photogenerated
charge carriers are strongly affected by the defect density
of the interface between the cathode/electron transport
layer (ETL), ETL/photoactive layer, hole transport layer
(HTL)/photoactive layer, and anode/HTL.53,54 In partic-
ular, the interfaces between ETL/photoactive layer and
HTL/photoactive layer are determinant in enhancing
injection of the charge carriers and yielding better
photovoltaic parameters.55,56

To scrutinize the role of DPP860 interface passivation
on enhancing photovoltaic properties, current density‐
voltage (J‐V) characteristics of devices with and without
passivator were measured under AM 1.5 G (100mWcm−2)
solar spectrum illumination (Figure 4A). Different solutions
of DPP860 concentrations 0.0, 0.3, 0.7, or 1.0mgmL−1 were
applied to find the optimal concentration which passivates
interface defects using J‐V characteristics. The J‐V findings
clearly show that incorporation of the DPP860 boosts the
short current density (Jsc) and FF of the OIHPSCs which

TABLE 1 Summary of time constants extracted from time‐
resolved photoluminescence spectra of perovskite films coated
with and without DPP860 polymer.

DPP860 concentration
(mg mL−1) A1 A2 τ1 (ns) τ2 (ns)

τavg
(ns)

0.0 0.24 0.71 10.5 30.1 28.1

0.3 0.23 0.68 11.6 35.2 32.9

0.7 0.39 0.48 22.3 62.7 53.6

1.0 0.20 0.68 8.6 33.1 31.4

ABICHO ET AL. | 7
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ascribes to minimized trap‐assisted and bimolecular
recombination processes across the interface.57 Devices
treated with 0.7mgmL−1 of DPP860 exhibit the optimum
Jsc and FF and hence the highest average PCE of
15.2 ± 0.4% (Figure 4B). Subsequently, statistical distribu-
tions have been shown (Figure 4C,D) and (Supporting
Information S1: Figure S4a,b) to compare the Jsc, PCE, Voc

and FF of the 62 and 30 devices with and without DPP860,
respectively. The average and best PV properties that
correspond to the statistical distribution are also indicated

in Table 2. Moreover, the measured external quantum
efficiency (EQE) spectra of the passivated OIHPSC show
relative improvement in EQE and the integrated short
circuit current density (Supporting Information S1:
Figure S5a). Maximum power point tracking (MPPT)
technique was used to study the operational stability of
the devices with and without DPP860 interface passivation
under continuous photoirradiation (100mWcm−2, AM1.5
G). Devices with passivation interlayer display improved
stability compared to control devices (Figure 4E).

FIGURE 4 Photovoltaic properties of perovskite devices with and without DPP860 passivation. (A) J‐V curves of the devices treated
with 0.0, 0.3, 0.7, and 1.0 mgmL−1 DPP860. (B) J‐V curves of perovskite solar cells treated with 0.0 and 0.7 mgmL−1 (the optimal
concentration) DPP860. Statistical distribution of (C) short‐circuit current density (Jsc), and (D) power conversion efficiency (PCE) of
perovskite devices treated with 0.0, 0.3, 0.7, and 1.0 mgmL−1 DPP860. (E) Operational stability of encapsulated perovskite devices obtained
from MPP tracking measurements under 1 sun (100mW cm−2) illumination.

8 | ABICHO ET AL.
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The depletion of the Jsc and FF was noteworthy for control
and passivated devices after irradiance, though the relative
change in Voc is insignificant (Supporting Information S1:
Figure S5b). This suggests that the incorporation of the
DPP860 as the interface passivator improves the operational
stability of the OIHPSCs.

3.4 | Charge carrier recombination
dynamics

Intensity‐modulated photovoltage spectroscopy (IMVS)
was used to scrutinize the impact of DPP860 in reducing
the charge carrier recombination dynamics in OIHPSCs.

TABLE 2 Summary of photovoltaic parameters obtained from J‐V characteristics of perovskite devices treated with DPP860 interface
passivator of various concentrations.

Concentration
(mg mL−1) Voc (V)

Jsc
(mA cm−2) FF (%) PCE (%)

0.0 Av. 0.99 ± 0.02 18.7 ± 0.41 76.27 ± 2.11 14.09 ± 0.68

Best 1.00 18.8 78.8 14.9

0.3 Av. 1.00 ± 0.01 19.17 ± 0.38 77.80 ± 1.45 14.93 ± 0.41

Best 1.01 19.4 79.3 15.7

0.7 Av. 1.00 ± 0.02 19.30 ± 0.33 78.61 ± 1.68 15.21 ± 0.43

Best 1.00 20.1 79.7 16.0

1.0 Av. 1.00 ± 0.01 18.93 ± 0.57 77.74 ± 1.39 14.69 ± 0.66

Best 1.01 19.7 79.2 15.8

Abbreviations: FF, fill factor; PCE, power conversion efficiency.

FIGURE 5 Intensity‐modulated photovoltage characteristics of MAPbI3 PSCs containing 0.0 and 0.7 (mgmL−1) of DPP860. (A) Nyquist
plots, (B) Imaginary transfer function (H″) versus frequency plots, (C) open‐circuit voltage (Voc) as a function of photon flux (cm−2 s−1)
intensity, and (D) charge carrier recombination time constant (τrec) as a function of the Voc of OIHPSCs.
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Measurement results were recorded in the absence of
charge extraction (at open‐circuit) to find the decay of
charge carriers as a result of defects in OIHPSCs. In
IMVS response, the dominant SRH recombination
(recombination resistance) phenomena are mainly
observed in the lower transfer function (high‐frequency
region) of the Nyquist plot (Figure 5A), which is
analogous to a lower frequency in electrochemical
impedance spectroscopy (EIS) results.58 The findings
show that devices with DPP860 exhibit enhanced
recombination resistance compared to the reference
device (device without DPP860).

Figure 5B presents the imaginary transfer function
(H″) versus frequency, which was scanned in the range
of 1 MHz to 50mHz under 8mW cm−2 LED light
illumination with 10% light intensity modulation. The

critical frequency (fc) f( = )c πτ

1

2 c
, which is directly related

to the maximum of H″ at high frequency and inversely
proportional to the time constant (τc) was determined.
Results show that devices with DPP860 exhibit longer
time constant compared to those without, which suggests
a lower charge recombination rate in interface passivated
devices.59 Moreover, the ideality factor (nid), which is
calculated from the slope of the graph of Voc as a function
of light illumination intensity (Figure 5C), suggests the
presence of trap‐assisted recombination in the devices.60

The extracted nid for the OIHPSCs with 0.7 mgmL−1 and
without DPP860 are ~1.24 and ~1.38, respectively. The
results infer that the improved Voc of treated OIHPSCs is
attributed to the reduced trap‐assisted recombination and
high shunt resistance of devices.61

The recombination time‐constant versus light illumi-
nation intensity graph (Figure 5D) was plotted to
compare the recombination time‐constant of OIHPSCs
with and without interface passivation. Devices with
DPP860 show a longer recombination lifetime compared
to devices without, which is ascribed to the suppressed
trap‐assisted recombination and improved charge extrac-
tion processes across devices interface.

4 | CONCLUSIONS

The findings in this work unveil that interface passiva-
tion using DPP860 has the potential to minimize
nonradiative recombination at the interface between
OIHP and PCBM. Thus, it facilitates the injection of
charge carriers and their mobility across the interface.
On the other hand, it also improves the hydrophobicity of
the light absorbing layer and alleviates problems regard-
ing moisture ingression to the perovskite layer from ETL

side. Moreover, the interface‐passivated p‐i‐n OIHPSCs
that were processed in an ambient environment disclosed
significant improvements, particularly in Jsc, FF, and
stability compared to control devices. The results confirm
that interface passivation using DPP860 is an optional
strategy to reduce trap‐assisted recombination and
improve the overall performance of MAPbI3‐based
perovskite solar cells.
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