

Lecture 1. The Development of Organic Conductors: Metals, Superconductors and Semiconductors

Lecture 2A. Introduction and Synthesis of Important Conjugated Polymers Lecture 2B. Solid State Polymerization

Lecture 3. Fullerene Chemistry Lecture 3B. Molecular Engineering

Carbon Allotropes

Falcao EHL, *Carbonaceous materials with exotic morphologies*. PhD Dissertation, University of California, Los Angeles, CA, Ch. 1 (2006)

Popular Science August 1991, p 53

The Arc-Discharge Preparation Method

Figure 1. Scale diagram of the apparatus used to produce fullerenes from graphite rods.

The Continuous Process Preparation

Fig. 1. Burner and associated equipment: a—low-pressure chamber; b—copper-burner plate; c, water cooling coil; d, e, and f—windows; g, h, and i—feedthroughs; j—annularflame feed tube; k—core-flame feed tube; l and m—exhaust tubes; n—sampling probe; o—filter; p—valve; q—vacuum pump; r—gas meter.

The Fullerene Bench-Top Reactor

Soxhlet Chromatography Separation

Physical Properties of Buckminsterfullerene

Hard crystals, red by transmission, black by reflection, yellow in film form

Sublimes above 500 °C @ 10⁻⁷ Torr

 $\Delta H^{\circ}f = 545$ kcal/mol, $\rho = 1.78$ g/mL, |= -260 cgs ppm

Cubic closed packed structure, individual molecules rotate at RT, transition to static Below 250 K

Bond alternation: 1.37 and 1.45 Å

Molecular Orbital Energy Diagram

Fig. 2. HMO energy level diagram for C_{60} (unscaled β , see text).

Electrochemical Properties

Xie, Q.; Pérez-Cordero, E.; Echegoyen, L. *j. Am. Chem. Soc.* 1992, 114, 3978

A Chemical Equivalent

Electron acceptor, dienophile, dipolarophile electrophile

Electron acceptor, dienophile, dipolarophile electrophile

Dipolarophile: the first Crystalline Derivative

152 Acc. Chem. Res., Vol. 25, No. 3, 1992

Figure 2. ORTEP drawing (50% ellipsoids) of the 1:1 C_{60} -osmium tetraoxide adduct $C_{60}(OsO_4)(4$ -tert-butylpyridine)₂ (1) showing the relationship of the osmyl unit with the carbon cluster. Reprinted with permission from ref 3. Copyright 1991 AAAS.

Figure 3. ORTEP drawing (50% ellipsoids) of 1 showing the geometry of the $C_{60}O_2$ unit and the numbering scheme. Reprinted with permission from ref 3. Copyright 1991 AAAS.

Dienophile: Crystalline Diels Alder Adduct

Y. Rubin, et al. J. Am. Chem. Soc. 1993, 115, 344.

Dipolarophile: the first C_{61} , 60- π Electron Derivative

Dipolarophile: the first C_{61} , 60- π Electron Derivative

C₆₁H₂ Isomers

60-π Electron 58-π Electron

Electrophile: Nucleophilic Additions

Cyanide Addition

Reagents and Conditions:

- (a) NaCN, ODCB/DMF, RT; (b) Trifluoroacetic acid, RT, 29%;
- (c) Methyl trifluoromethanesulfonate, RT,10%; (d) 4-(tert-Butyl)benzyl bromide, 70 °C, 11%;
- (e) *p*-Toluenesulfonyl cyanide, RT, 61%.

Electrochemistry of the Dicyano Derivative

Multi-cyanation of C₆₀

Jousselme, B.; Sonmez, G.; Wudl, F. J. Mater. Chem., 2006, 16, 3478 - 3482

Negative MALDI-TOF spectra of $C_{60}H(CN)_3$ (a) and $C_{60}(CN)_4$ (b).

HPLC profile of (a) C_{60} , (b) $C_{60}H(CN)$, (c) $C_{60}(CN)_2$, (d) $C_{60}H(CN)_3$, (e) $C_{60}(CN)_4$

Non-Regiospecific Addition of CN⁽⁻⁾

Aromatic part spectrum ¹H NMR of (a) $C_{60}H(CN)_3$ and (b) $C_{60}H(CN)$, in CD_2Cl_2 .

Electrochemistry of (Cyano)C₆₀

Differential Pulse Voltammetry of (a) C_{60} , (b) $C_{60}H(CN)$, (c) $C_{60}(CN)_2$, (d) $C_{60}H(CN)_3$, (e) $C_{60}(CN)_4$ in 0.1 M TBAP/ODCB

Reduction Potentials of Cyano-Fullerenes

Reduction potentials (V vs Ag/Ag⁺)					
Compound	E_1	E_2	E_3		
C ₆₀	- 0.77	- 1.16	- 1.62	- 2.12	
C ₆₀ H(CN)	- 0.70	- 1.09	- 1.59	- 2.04	
C ₆₀ (CN) ₂	- 0.63	- 1.05	- 1.52	- 1.97	
C ₆₀ H(CN) ₃	- 0.65	- 1.06	- 1.69	- 2.02	
C ₆₀ (CN) ₄	- 0.49	- 0.93	- 1.54	- 1.97	

DPV of $C_{60}H(CN)$ (black) with one equivalent of sodium salt (red). (Top left, sodium acetate; top right, sodium chloroacetate. Bottom left, sodium dichloroacetate; bottom right, sodium trifluoroacetate).

Electrochemical pKa Determination

DPV of $C_{60}H(CN)_3$ (black) with one equivalent of sodium salt (red). (Top left, sodium acetate; top right, sodium chloroacetate. Bottom left, sodium dichloroacetate; bottom right, sodium trifluoroacetate).

Isomer Interconversions, Including Reversion to C₆₀

An Important Example, PCBM

Preparation and Characterization of Fulleroid and Methanofullerene Derivatives. Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. *J. Org. Chem.* **1995**, *60*, 532–538.

Dipolarophile: The Most Efficient Derivatizations

Synthetic Reactions Applicable to Fullerene **Materials** $C_{60} + R^{\prime} = N_2$ C₆₀ + R B-H ↓ DBU R i or ii or iii or iv $C_{60}[R_2C]_n$ $C_{60}[R_2C]_n$ **Materials** R' NH R C₆₀ + RCHO + R'NHCH₂CO₂H i, 80 - 130 ÞC; ii, hv; iii, H⁽⁺⁾; iv, e⁽⁻⁾

Prato, M. Fullerene Materials. Topics in Current Chemistry 1999, 199, 173-188.zz

High Yield Regioselective Additions

Murata, Y.; Shiro, M.; Komatsu, K. J. Am. Chem. Soc. 1997, 119, 8117-8118.

Sawamura, M.; Ilkura, H.; Nakamura, E. J. Am. Chem. Soc. **1996**, *118*, 12850-12851. Nakamura, E. *Pure and Appl. Chem.* **2003**, *75*, 427-434.

Isobe, H.; Tanaka, T.; Nakanishi, W.; Lemiegre, L.; Nakamura, E. J. Org. Chem. 2005, 70, 4826

Applications ?

 Carrier collection efficiencies, η_c, of Ca/MEH-PPV:[6,6]PCBM /ITC (solid squares), Al/MEH-PPV:[6,6]PCBM/ITO (open diamonds), Ca/MEH-PPV:[5,6]PCBM/ITO (open circles), Ca/MEH-PPV:C₆₀ /ITO (open triangles) and Ca/MEX-PPV/ITO (solid circles).

G. Yu, J. 600, J.c. Hummelen, F. Wudl, A.J. Herger Science, 1995, 270, 1789

Fullerene-PPV Plastic Solar Cell

BILAYER

BULK HETEROJUNCTION

http://www.ipc.uni-linz.ac.at/publ/homecol.pdf

Proposed Interaction between Polymer and Fullerene Derivativ

http://www.ipc.uni-linz.ac.at/publ/homecol.pdf

Dipolar Cycloaddition of Azide: Synthesis of a PCBM Nitrogen Analog

Electrochemical Data

Electrode Potential (V vs Fc/Fc+)

compound	$E^{I}_{\ red}$	$E^2_{\ red}$	E^{3}_{red}
5,6-Open	-1.114	-1.512	-1.984
6,6-Closed	-1.110	-1.504	-2.000
РСВМ	-1.158	-1.540	-2.039
C_{60}	-1.071	-1.484	-1.969

Optical Data

OFET Results

Bulk Heterojunction Solar Cell Device

White Light LED

Hutchison, K.; Gao, J.; Schick, G.; Rubin, Y.; Wudl, F. Journal of the American Chemical Society **1999**, *121*, *23*, 5611-5612.

Addition Patterns for the T_h and D_3 -Hexaadducts

D₃-Hexaadduct (chiral)

Hutchison, K.; Gao, J.; Schick, G.; Rubin, Y.; Wudl, F. Journal of the American Chemical Society **1999**, *121*, *23*, 5611-5612.

Electroluminescens Spectra

Bucky Light Bulbs: White Light Electroluminescence from a Fluorescent C₆₀ Adduct-Single Layer Organic LED. Hutchison, K.; Gao, J.; Schick, G.; Rubin, Y.; Wudl, F. *Journal of the American Chemical Society* **1999**, *121*, *23*, 5611-

pearl necklace polymer

charm bracelet polymer

star-like polymer

Prato, M. Fullerene Materials in Topics in Current Chemistry 1999, 199, 173-188.

Wudl, F.; Prato, M. et al. Chem. Mater. 1995, 7, 441-442

Benincori, T.; Brenna, E.; Sannicolò, F.; Trimarco, L.; Zotti, G. et al. The First "Charm Bracelet" Conjugated Polymer: An Electroconducting polythiophene with covalently bound fullerene moieties. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 648-651

Summary

Though Buckminsterfullerene C_{60} is easily derivatized through cycloaddition/nucleophilic addition, there are still major applications waiting to be invented/discovered

Though Buckminsterfullerene C₆₀ is easily derivatized, most derivatization reactions occur in moderate-to-low yield

