Steel, Ammonia, Green H₂ and CO₂ a pack of cards to create industrial symbiosis options in Upper Austria # Valerie Rodin^{1,2}, Johannes Lindorfer¹, Andreas Zauner¹, Oliver Maier³ Thematic area: (5) Decarbonization: Industry ## **Motivation** Circular economy is a building brick to sustainably transform Europe's industry: - Utilization of alternative resources - Development of **new value chains** - Drastic changes for some sectors Thus, Austrian industrial players face big challenges, among these are the steel and fertilizer industries. In Linz, they operate fence-to-fence. #### Crude steel production is a great CO₂ emitter due to coke input Renewable H₂ is an alternative reducing agent For **ammonia**, H₂ from natural gas is a key resource ▶ Renewable H₂ is the alternative ## Urea production consumes CO₂ - ▶ Traditionally, CO₂ is sourced from natural gas steam reforming - □ Tapping alternative CO₂ sources #### Thus, joint questions rise: - locally from green electricity? - ▶ Feasible alternatives to on-site H₂ production in the long-term? - Symbiotic CO₂ interlinkages? #### **Methods** # Results (selection) ## Green H₂ exchange and import - ▶ Theor. H₂ demand for steel & ammonia production is ~4200 Mio Nm²/a - Theor. electricity demand ~23 TWh/a - (Additional) H₂ import needed ## H₂ for ammonia production Fig.1.Green H₂ as natural gas replacement for ammonia Green H₂ will decrease th NG consumption and reduce CO2 emissions #### Ammonia as H₂ storage ▶After reconversion residuals of NH₃ and N₂ must be removed in H₂ stream to achieve the required purity for metallurgical processes ## **Methanation options** Fig.4. Theor. SNG production from green H2 & CO2 off-gases Fig.5. On-site SNG production costs Costs for SNG range from around 0.06 to 0.26 €/kWh, for both on-site H₂ production and H₂ import depending on the electricity price. #### CO₂ for urea production Even for decarbonized steel production, certain amounts of carbon are needed for metallurgical processes □ Unavoidable CO₂ emissions theoretically provide sufficient amounts to cover demand of urea production Fig.6. Theoretical CO₂ separation from steel off-gas for utilization at urea plant # Conclusion #### **Objectives** - Create win-win situation for the industrial players - Drive their transition to sustainable production. - Options were assessed in different levels of detail Initially, CO₂ was in the focus for a local "carbon cycle" Long-term perspective: cooperation on local H₂ production and import options #### Outlook: Joint road-mapping process **ENERGIE** INSTITUT - Refinement of business models - Detailing of process adaptions with focus on green hydrogen. ² Institute for Chemical Technology of Organic Materials, JKU Linz ³ K1MET GmbH Contact: rodin@energieinstitut-linz.at +43 (0) 732 / 2468 5671 lindorfer@energieinstitut-linz.at +43 (0) 732 / 2468 5653 Altenbergerstraße 69 / 4040 Linz www.energieinstitut-linz.at This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 958337.