Steel, Ammonia, Green H₂ and CO₂ a pack of cards to create industrial symbiosis options in Upper Austria

Valerie Rodin^{1,2}, Johannes Lindorfer¹, Andreas Zauner¹, Oliver Maier³

Thematic area: (5) Decarbonization: Industry

Motivation

Circular economy is a building brick to sustainably transform Europe's industry:

- Utilization of alternative resources
- Development of **new value chains**
- Drastic changes for some sectors

Thus, Austrian industrial players face big challenges, among these are the steel and fertilizer industries.

In Linz, they operate fence-to-fence.

Crude steel production is a great CO₂ emitter due to coke input

Renewable H₂ is an alternative reducing agent

For **ammonia**, H₂ from natural gas is a key resource

▶ Renewable H₂ is the alternative

Urea production consumes CO₂

- ▶ Traditionally, CO₂ is sourced from natural gas steam reforming
- □ Tapping alternative CO₂ sources

Thus, joint questions rise:

- locally from green electricity?
- ▶ Feasible alternatives to on-site H₂ production in the long-term?
- Symbiotic CO₂ interlinkages?

Methods

Results (selection)

Green H₂ exchange and import

- ▶ Theor. H₂ demand for steel & ammonia production is ~4200 Mio Nm²/a
- Theor. electricity demand ~23 TWh/a
- (Additional) H₂ import needed

H₂ for ammonia production

Fig.1.Green H₂ as natural gas replacement for ammonia

Green H₂ will decrease th NG consumption and reduce CO2 emissions

Ammonia as H₂ storage

▶After reconversion residuals of NH₃ and N₂ must be removed in H₂ stream to achieve the required purity for metallurgical processes

Methanation options

Fig.4. Theor. SNG production from green H2 & CO2 off-gases

Fig.5. On-site SNG production costs

Costs for SNG range from around 0.06 to 0.26 €/kWh, for both on-site H₂ production and H₂ import depending on the electricity price.

CO₂ for urea production

Even for decarbonized steel production, certain amounts of carbon are needed for metallurgical processes

 □ Unavoidable CO₂ emissions theoretically provide sufficient amounts to cover demand of urea production

Fig.6. Theoretical CO₂ separation from steel off-gas for utilization at urea plant

Conclusion

Objectives

- Create win-win situation for the industrial players
- Drive their transition to sustainable production.
- Options were assessed in different levels of detail

Initially, CO₂ was in the focus for a local "carbon cycle"

Long-term perspective: cooperation on local H₂ production and import options

Outlook:

Joint road-mapping process

ENERGIE

INSTITUT

- Refinement of business models
- Detailing of process adaptions with focus on green hydrogen.

² Institute for Chemical Technology of Organic Materials, JKU Linz

³ K1MET GmbH

Contact: rodin@energieinstitut-linz.at +43 (0) 732 / 2468 5671

lindorfer@energieinstitut-linz.at +43 (0) 732 / 2468 5653

Altenbergerstraße 69 / 4040 Linz www.energieinstitut-linz.at

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 958337.