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ABSTRACT
This technical report describes CP-JKU Student team’s approach
for Task 1 - Subtask B of the DCASE 2019 challenge. In this con-
text, we propose two loss functions for domain adaptation to learn
invariant representations given time-aligned recordings. We show
that these methods improve the classification performance on our
cross-validation, as well as performance on the Kaggle leader board,
up to three percentage points compared to our baseline model. Our
best scoring submission is an ensemble of eight classifiers.

Index Terms— Acoustic Scene Classification, Domain Adap-
tation, DCASE

1. INTRODUCTION

Convolutional Neural Networks (CNNs) have emerged to become
state of the art tools for audio related machine learning tasks, such as
acoustic scene classification, audio tagging and sound event local-
ization. While CNNs are known to generalize well if the recording
conditions for training and unseen data remain the same, the gener-
alisation of this class of models degrades when there is a distribution
mismatch between the training and the testing data [1]. Subtask 1b
of 2019’s IEEE AASP Challenge on Detection and Classification
of Acoustic Scenes and Events [2] is concerned with this problem:
Participants are asked to create an acoustic scene classification sys-
tem for ten different acoustic scene classes. A set of labelled audio
snippets recorded with a high-quality microphone (known as De-
vice A) is provided for training. Additionally, for a small subset of
samples from device A, parallel recordings from two lower quality
microphones (devices B and C) are given. Fig. 1 shows three time-
aligned recordings, for which we can observe the device-specific
characteristics. Ranking of submissions is done based on the over-
all accuracy on unseen samples from devices B and C. The acous-
tic scene, the city, and the device labels are provided for samples
of the development set only. The main challenge of task 1b is to
develop a model that although trained mostly on samples from de-
vice A, is able to generalize well to samples from devices B and
C. Since this problem is related to the field of Domain Adaptation
(DA) we refer to the distribution of A samples as the source domain
(xs ∼ Xs), and the distribution of B and C samples as the target
domain (xt ∼ Xt). This technical report explains how a state-of-
the-art CNN architecture which by itself achieves a high rank on the
public Kaggle leader board1 can be further improved by using sim-

1https://www.kaggle.com/c/dcase2019-task1b-leaderboard/
leaderboard

ple DA techniques. For reproducibility, we make our source code
available on GitHub2.

2. THE PROPOSED METHOD

The following section describes our experimental setup and domain
adaptation techniques in detail.

2.1. Data & Cross Validation Setup

Preprocessing is done similar to [3]: We resample the audio sig-
nals to 22050Hz and compute a mono-channel Short Time Fourier
Transform using 2048-sample windows and a hop-size of 512 sam-
ples. We apply perceptual weighting to the individual frequency
bands of the power spectrogram and a mel-scaled filterbank for
frequencies between 40 and 11025Hz, yielding 431-frame spectro-
grams with 256 frequency bins. Samples are normalized during
training by subtracting the training set mean and dividing by train-
ing set standard deviation. For the cross-validation splits, all paral-
lel recorded samples are divided into four folds such that triplets of
time-aligned samples are in the same fold. Samples from device A
are distributed between folds such that samples recorded at the same
location are placed into the same fold. The remaining samples are
shared between all folds.

Figure 2: Model Architecture [4]. k1 and k2 are the kernel sizes
of the first and the second layer, respectively. d is the number of
channels.

2https://github.com/OptimusPrimus/dcase2019_
task1b

https://www.kaggle.com/c/dcase2019-task1b-leaderboard/leaderboard
https://www.kaggle.com/c/dcase2019-task1b-leaderboard/leaderboard
https://github.com/OptimusPrimus/dcase2019_task1b
https://github.com/OptimusPrimus/dcase2019_task1b
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Figure 1: From left to right: Time-aligned recordings from devices A (Soundman OKM II Klassik/Studio A3 Microphone & Zoom F8
Recorder), B (Samsung Galaxy S7) and C (iPhone SE). Spectrograms show microphone-specific patterns, e.g. samples from devices B and C
have more noise in lower Mel bins, compared to those from device A.

2.2. Network Architecture

We use the model architecture introduced by Koutini et al. [4],
a receptive-field-regularized, fully convolutional, residual network
(ResNet) with five residual blocks (Fig. 2.1). The receptive field of
this architecture is tuned to achieve the best performance in audio-
related tasks using spectrograms, as discussed in [4].

2.3. Domain Adaptation

We propose two distance and entropy-based loss functions to en-
courage the CNN to learn device-invariant representations for paral-
lel samples from the source (Xs), and the target domain (Xt). Both
of these losses exploit the fact that the time-aligned spectrograms
(xs, xt) contain the same acoustic information about the acoustic
scenes and differ only due to device characteristics. To achieve the
best performance, we use a combination of classification loss and
a DA loss. We use Categorical Cross Entropy (CCE) for classifica-
tion, and combine it with the DA loss as follows:

L = LCCE + λLl,DA (1)

λ controls the influence of the DA loss during training and l speci-
fies to which (hidden) representation it is applied.

2.3.1. Mean Squared Error Loss

Let φl(xs) and φl(xt) be hidden layer activations for samples from
the source and the target domains, respectively. We define the Mean
Squared Error (MSE) loss between the (hidden) representations of
size f as follows:

LMSE =
1

f · n

n−1∑
i=0

f−1∑
j=0

(φl(x
s
i )j − φl(xti)j)2 (2)

where n is the DA mini-batch size. For our experiments l is set to
correspond to the output layer before applying the softmax activa-
tion.

2.3.2. Mutual Information Loss

According to Ji et al. [5], Mutual Information (MI) I can be used
to learn a representation φ(·) which preserves what is common be-
tween two different images containing the same object.

We apply the same idea to learn a representation which discards
device-specific characteristics of features, by maximizing the MI
between parallel representations:

maxψlI(φl(x
s), φl(x

t)) (3)

Note that MI is maximized if, given one representation the other
one is predictable, i.e. they are the same. To compute this quantity,
we introduce a layer with output size c parallel to the classification
output layer. The MI-Loss between the parallel representations can
then be computed as described in [5]. We tried different numbers of
clusters, and setting c to 20 provided the best results for our experi-
ments.

2.4. Training

All models are trained for 250 epochs with mini-batch updates of
size 32 and ADAM [6] update rule. The initial learning rate is set
to 10−3 and decreased by a factor 0.5 if the mean accuracy for
devices B and C does not increase for 15 epochs. If the learning
rate is decreased, we also reset the model parameters to the best
model in terms of mean accuracy of device B and C up to the last
epoch. We further use MixUp augmentation [7] with parameters of
the beta-distribution set to α = β = 0.2.
For each fold, the model that scores the highest averaged device
B and C accuracy accbc is selected for prediction on future data.
accbc is calculated by averaging the individual device accuraccies
as shown in Equation (4).

accbc =
accb + accc

2
(4)

2.5. Model Ensembling

As we train every model on 4 folds, our final submission models are
an ensemble of the outputs of the 4 folds. For submission 1, 2 and
3, we average the softmax predictions of each fold’s best scoring
model and select the class with the highest score. Submission 4
combines two independently trained submission models, again by
averaging each of their 4 folds softmax outputs.
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Kaggle Fold 0 Fold 1 Fold 2 Fold 3 4-Fold-CV Prov. Split Sub. ID

No DA 0.7366 0.6977 0.6899 0.6459 0.6429 0.6691 0.6120 1
MSE (λ = 0.1, n = 4) 0.7583 0.7186 0.6846 0.7042 0.6795 0.6967 0.6435 2
MI (λ = 0.1, n = 4, c = 20) 0.7333 0.7338 0.6742 0.6362 0.6538 0.6745 0.6250 3
Ensemble 0.7666 - - - - - - 4

Table 1: Result table shows validation results of all submitted systems in terms of accuracy for different validation setups: Kaggle public
leaderboard, folds 0 to 3, cross validation, and provided split. The last column shows the submission ID of the corresponding method.

Figure 3: Average accuracy of device B and C during training on
fold 0 for no domain adaptation, mutual information and MSE.

3. RESULTS

The results of the models can be seen in Table 2.2. All scores are
the averaged accuracy of device B and C. The column Sub. ID is a
reference to the submission ID for the final challenge submission.
The column Kaggle refers to the score the model achieved on the
public leader board on Kaggle. The columns Fold 0 - 3 show the
accuracy for each individual fold and the avg-column the averaged
accuracy over all folds. The last column provides the accuracy of
the model on the provided train-test split. For this score, the com-
plete model was retrained on the proposed train/test split.
Our base model (Section 2.1), the convolutional residual network
(ResNet) introduced by Koutini et al. [4] achieved a BC-accuracy of
0.7366 on the leader board, training with the provided split achieved
an accuracy of 0.612.
The model with mutual information as additional loss for domain
adaptation (Section 2.3.2) shows an improvement on the provided
split of 1.3 p.p. over the base model, however on the public leader
board it performed slightly worse (0.7333 compared to 0.7366 of
the base model). Although it did not improve the performance as
much as MSE, MI showed in some folds promising results. As we
can see in Figure 3, which shows accbc during the training of fold
0, the model scored with an accuracy of 0.7338 the top score for a
single fold over all of our trained models.
The third model uses MSE loss (Section 2.3.1) for domain adapta-
tion. On the public leader board, it gained an additional 2.17 p.p.
over the base model, resulting in an accuracy of 0.7583. The gain is
even larger on the proposed split, as with 0.6435 it performed 3.15
p.p. better than our base model. In our experiments, this model
also produced on average the most balanced accuracy between all
three devices, however as we have chosen the model with the best

accuracy for device B and C for our final submission, accuracy on
device A is slightly worse.
Our ensemble of eight predictors achieves the best results: With an
accuracy of 0.7666, it is the top scoring submission on the public
Kaggle leader board.

4. CONCLUSION

In this report, we have shown how an already good performing
ResNet-like model [4] can be further improved for DCASE 2019
task 1b by using DA techniques. Our DA losses are designed to en-
force equal hidden layer representations for different devices by ex-
ploiting time-aligned recordings. Notably, the MSE domain adap-
tation increased the performance by 2.17 p.p. on the public leader
board and by 3.15 p.p. on the proposed split on the train set. Mutual
information did not increase the performance on the leader board,
but it increased performance on the development-dataset compared
to our baseline and even showed the top result for fold 0 over all of
our models.
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