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Abstract

Recent research in the field of DC-DC converters re-
vealed a huge potential for the nonlinear control tech-
nique Sliding Mode Control (SMC). Various state-of-the-
art publications, e.g. [1]–[4], only consider an analog
controller implementation, since a feasible digital imple-
mentation is not straightforward. In this paper, a digital
sliding mode controller for DC-DC converters is pre-
sented. In order to be applicable for different converter
topologies and operation modes, information of the in-
ductor current is used as an input for control. Hence,
the required current has to be sensed or estimated.
The digital sliding mode algorithm is implemented in a
simulation environment, where the system parameters are
chosen to represent a realistic Power Management Unit
(PMU) for a mobile device. Results of the simulations are
presented for a Buck converter operating in Continuous
Conduction Mode (CCM). Based on the simulations it
is shown that the proposed digital control algorithm
achieves a small voltage ripple in steady-state, and an
excellent dynamic performance under different operation
conditions.

I. Introduction

The application of digital control algorithms to DC-
DC converters is attracting increasing interest in the
recent years [5]–[7]. The main reasons for this trend are
among others the high flexibility and reusability of digital
controllers. Furthermore, they enable the possibility to
implement complex control algorithms with reasonable
hardware effort. On the other hand, a digital implemen-
tation requires an additional Analog-to-Digital Converter
(ADC), which has to be considered during the design.

Recent research on DC-DC converters showed a high
potential for improving the dynamic performance by
applying Sliding Mode Control (SMC) [1]–[3]. This
nonlinear control scheme is especially well suited for
Variable Structure System (VSS) like DC-DC converters
[8]. The main advantage of SMC over common linear
control schemes is its high robustness against line, load
and parameter variations [4]. Furthermore, the same con-
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Fig. 1. High-level representation of the system under
exam, consisting of a DC-DC converter (e.g. a Buck
converter), an ADC, a controller and a driver stage.

trol structure can be used with the same coefficients when
switching between different operation modes and hence
transient effects can be avoided. Moreover, the derived
approach is applicable for different topologies like Buck,
Boost or Buck-Boost converters. A major drawback of
this technique is the variable switching frequency, which
is undesirable in many applications because of possible
problems with Electro-Magnetic Interference (EMI) at
adjacent parts of the system.

In this paper a digital control structure based on the
theory of sliding mode control [9]–[11] is presented for
a Buck converter operating in Continuous Conduction
Mode (CCM). Fig. 1 shows a schematic representation of
the investigated system. The conventional sliding mode
algorithm has been modified to operate at a constant
switching frequency, thus reducing EMI issues of the
proposed control structure [12]. It is highlighted that the
developed controller represents a unified approach which
is not restricted to a Buck converter operating in CCM.

The remainder of this paper is organized as follows:
Section II gives an introduction to the theory of sliding
mode control and its application to DC-DC converters.
The implementation specific issues of the digital sliding
mode controller are summarized in Section III. Sec-
tion IV presents the results of the developed simulation
environment and Section V provides a comprehensive
summary of the major findings.



II. Sliding mode control

Sliding mode control has been verified to be a very ef-
fective control technique for regulating VSSs like DC-DC
converters [13]–[15]. On the other hand, SMC has some
major drawbacks like the variable switching frequency of
a pure sliding mode controller implementation [16]–[18]
and the additional need for current sensing or estimation
if the control structure is defined for a unified approach.
However, this disadvantages can be overcome for certain
applications by a digital controller implementation as
proposed in this paper.

A. Sliding mode theory

A general mathematical model for a dynamic VSS,
including also different types of DC-DC converters [9],
is given by

ẋ = f (x, t, u) , (1)

where x ∈ Rn×1 is the vector of state variables, t ∈ R
is the time and u ∈ {u+, u−} is the actuating signal.
The sliding mode controller forces the Representative
Point (RP) of the system to hit the sliding surface
σ(x, t) = 0 in a first step. After this so-called reaching
phase, the SMC forces the RP to stay on the sliding
surface while concurrently sliding down on the surface
until the trajectory reaches the desired equilibrium point.
In this second phase, the system is said to be in sliding
mode. The control law to achieve this can be written as

u =

{
u+ if σ(x) > 0

u− if σ(x) < 0.
(2)

Hence, for VSSs the function f is discontinuous on the
sliding surface σ(x, t) = 0 and can be expressed as

f =

{
f+(x, t, u+) if σ → 0+

f−(x, t, u−) if σ → 0−,
(3)

where 0+ denotes an approaching of 0 from positive
values and 0− from negative values, respectively. During
sliding mode operation the dynamic behavior of the
system is almost independent of the plant parameters and
depends solely on the definition of the sliding function
σ(x) [10]. An exemplary trajectory of the RP of a
system under sliding mode is shown in Fig. 2, where the
actuating signal u is defined as u− = 1 and u+ = 0,
representing the logical states “on” and “off” of the
investigated system.

The choice of the sliding function is of key importance
to ensure that the existence, reaching and stability con-
ditions of the sliding mode controller are fulfilled [9].
The reaching condition ensures that for every possible
starting point of the trajectory in the phase plane, the
RP is directed towards the sliding surface in finite time.
For this purpose, it is sufficient to demonstrate that the
steady state RP corresponding to u+ (u−) lies in the
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Fig. 2. An example trajectory of a system under
sliding mode. In this case, σ(x) is a linear combination
of the error of the output voltage and the capacitor
current of a Buck converter. Note that the equilibrium
point is the origin of the phase plane, which yields
output voltage regulation vo = Vref .

portion of the state space relative to u− (u+). Therefore,
the reaching condition is met if

x+ ∈ σ(x) < 0

x− ∈ σ(x) > 0,

where x+ (x−) is the steady state RP when the actuating
signal u = u+ (u = u−). The existence condition assures
that, if the RP is near the sliding surface, the trajectory
will be directed towards σ(x) = 0. Hence, if the system
trajectory approaches the sliding surface from σ(x) <
0, f− has to be directed towards σ(x) = 0, and if it
approaches from σ(x) > 0, f+ is steered in direction of
σ(x) = 0, respectively. To derive the existence condition,
a positive definite Lyapunov function candidate V (x) is
introduced

V (x) =
1

2
σT(x)σ(x). (4)

The chosen Lyapunov function can be interpreted as
the distance to the sliding surface since σT(x)σ(x) =
‖σ(x)‖22. In order to satisfy the existence condition, the
time derivative of V (x) has to be negative definite, given
by (5), and thus the distance to σ(x) = 0 reduces over
time

dV (x)

dt
= σ(x)

dσ(x)

dt
< 0. (5)

For the definition of the sliding function a linear combi-
nation of the state variables is chosen, given by

σ(x, t) = sTx(t), (6)

where sT = [s1 ... sn] ∈ R1×n is the vector of
coefficients of the sliding function. It can be immediately
seen that V (x) is positive definite and (4) results in

{
sT · f > 0 if σ < 0

sT · f < 0 if σ > 0.
(7)



(a) Buck “on” configuration (u = u−)

(b) Buck “off” configuration (u = u+)

Fig. 3. Buck converter in open-loop configuration,
including the most important parasitic components.
Subfigure (a) depicts the “on” configuration, while
subfigure (b) depicts the “off” configuration.

Finally, the system stability is guaranteed if the trajectory
is directed towards a stable operating point when in
sliding mode operation. Stability can be analyzed via the
equivalent model of the system under sliding mode.

B. Application to DC-DC converters

Due to their switching nature, DC-DC converters can
be considered as VSS [9]. The structure of DC-DC con-
verters is changing over time during operation, according
to the value of the input Pulse Width Modulation (PWM)
signal u, which is driving the switches of the converter.
A schematic representation of the investigated system is
shown in Fig. 3.

The definition of the sliding surface σ(x) = 0 is of
key importance because it directly influences the dynamic
behavior of the system [19], as stated previously. Since
the derivative of the output voltage vo is discontinuous
for a boost converter, it cannot be included into a
general definition of the sliding function, which shall be
employed for different converter topologies [11], [13].
Alternatively to the error dynamics, the inductor current
is a feasible choice as a state variable of the control
system. This allows a general definition of the sliding
function with the drawback that the inductor current

has to be sensed. Otherwise, iL needs to be estimated
if a pure voltage-mode controller is desired. Hence,
the vector of state variables x, applicable for different
topologies is defined as

σ(x) = sTx = s1x1 + s2x2 + s3x3, (8)

x =



x1

x2

x3


 =




vo − Vref
iL∫

(vo − Vref)dt


 , (9)

where vo is the sensed output voltage, Vref is the set
point of the output voltage and iL is the inductor current.
The additional integral term is needed to remove the
steady-state error, as in general it holds that the average
value of the inductor current over a switching period
〈iL〉Tsw 6= 0. By the addition of the integral part, the
proposed definition represents a full-order approach for
the sliding mode controller, since it has the same order
as the system. For ease of calculation, the first coefficient
s1 has been set to 1 in the following analysis, without
loss of generality.

C. Application to a Buck converter

In this subsection, the design of the proposed digital
sliding mode controller is shown for a Buck converter.
Furthermore, the necessary conditions for the choice of
the sliding coefficients are derived for this particular case.
If the state variable vector x is defined as in (9), the state-
space representation of a Buck converter can be denoted
by

ẋ = Ax+Bu+D,

A =




− 1

R`C
− 1

C
0

− 1

L
0 0

1 0 0




, B =




0

Vbat
L

0


, D =




− Vref
R`C

−Vref
L

0




,

where L and C are the values of the inductance and
capacitance of the output filter, Vbat is the input (battery)
voltage, and R` is the load resistance.

To verify the reaching condition, it is sufficient to check,
if the steady-state RP corresponding to u = u+ (vo → 0)
lies in the portion of the state space corresponding to
u = u− (vo → Vbat) and vice versa. For reasonable
values of Vbat and Vref (Vbat > Vref > 0) this condition
is always fulfilled for the given setup.

In order to meet the existence conditions, the state-space
model of the Buck converter is inserted into (7) to obtain




− 1

C
iL + s2

Vbat − Vref
L

− Vref
R`C

> 0 if σ < 0,

− 1

C
iL − s2

Vref
L
− Vref
R`C

< 0 if σ > 0.

(10)
The derived existence conditions in (10) form a so-called
existence region which bounds the possible values of the
sliding coefficients si.



The last condition which has to be verified is the
stability condition of the system in sliding mode. As soon
as the RP reaches the sliding surface, the controller forces
the trajectory to stay there, i.e. σ̇ = 0, yielding

dx1
dt

+ s2
dx2
dt

+ s3x1 = 0, (11)

which can be reduced to a differential equation in x1
only

d2x1
dt2

+
1

Cs2

(
1 +

s2
R`

)
dx1
dt

+
s3
Cs2

x1 = 0. (12)

If (12) is a Hurwitz polynomial, the eigenvalues have a
negative real part which ensures stability of the system.
The values of the components are always positive. Thus,
from (12) it can be obtained that in order to meet the
stability condition both coefficients s2 and s3 have to be
positive. The possible choice of the coefficients of the
sliding function is bounded by the derived conditions.

III. Digital implementation details

The control structure presented in Sec. II has been
implemented in the digital domain. Hence, an ADC is
needed to sample the output voltage error, as shown in
Fig. 1. For the proposed setup a window flash ADC with
a sampling frequency fs = 6.25MHz, corresponding to
4 samples per switching period (at a switching frequency
fsw = 1.56MHz), a quantization step size of 10mV and
a resolution of 4 bits is used to sample the output voltage
error. Moreover, a driver stage is needed to generate the
driving signals for the power MOSFETs of the output
stage. Further details on several implementation issues
are examined in the following subsections.

A. Constant switching frequency

A pure sliding mode controller switches at a very high
frequency during the sliding phase. This behavior is
undesired in most applications because of high switch-
ing losses and possible EMI problems. Furthermore,
the implemented switches are only able to switch at
a certain rate due to physical limitations. Hence, in a
practical application, only a so-called quasi sliding mode
operation can be achieved, where the switching frequency
is constrained to a certain maximum value.

Various constant frequency techniques have been pro-
posed in literature, such as dynamically adapting the
amplitude of the hysteresis band [4], or using a PWM-
based sliding mode approach [8]. In this paper, a different
technique is used: the PWM signal u is set to a logical
“on” state at every rising edge of a clock signal (running
at the desired switching frequency fsw) and reset to “off”
state, when the sliding function reaches a pre-determined
threshold level. Hence, the operation of the converter is
synchronized to the clock signal, which sets the switching
frequency. To avoid frequency variations due to high load

vo
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Fig. 4. High-level representation of the sliding surface
generation and synchronization to a clock signal.

variations, a minimum “on” and “off” time of the PWM
signal u is introduced. A schematic representation of the
controller is reported in Fig. 4.

B. Slope compensation

It is well known from literature that a fixed-frequency
current-mode control leads to a static instability if the
duty cycle of the PWM actuating signal u exceeds 50%
for the case of a Buck converter [20]. Then the PWM sig-
nal oscillates between a very large and a very small duty
cycle. The result is on average correct, but the voltage and
current ripple increases significantly. Since the operating
frequency is fixed and current information is used by
the controller, the same applies for the proposed sliding
mode control structure. To avoid this kind of instability,
a ramp has to be added to the definition of the sliding
function. The ramp consists of an accumulator which
counts up by 1 at the rate of the system clock frequency
fclk and resets to 0 at the beginning of every PWM
switching period Tsw = 1/fsw. Furthermore, the ramp
has to be properly scaled by an additional scaling factor
before accumulating to the sliding function. To reduce
complexity, the same counter as in the switching period
generation process has been used for the generation of
the ramp.

C. Sliding surface generation

The overall digital implementation of the sliding surface
generation is shown in Fig. 5. In the first branch, the
output voltage error vo−Vref , which is computed by the
ADC, is filtered by a first-order low-pass filter to reduce
the influence of disturbances on the analog-to-digital
conversion. This part is the first term in the sum, forming
the sliding function. The first sliding coefficient s1 is
assumed to be 1, without loss of generality. Hence, no
gain factor is needed in this branch. The second branch
computes the integral of the voltage error and scales
the result with the coefficient s3 before adding it to the
sliding sum. The remaining two branches are the inductor
current information and the artificial ramp generation. It
is worth noting that the coefficients si have been chosen
such that the scaling can be realized solely by shift
operations. This avoids the need for multiplications and
hence reduces the overall complexity of the system.
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Fig. 5. Digital implementation of the sliding surface
computation. The comparator and the flip-flop, as
shown in Fig. 4, are omitted in this figure for
simplicity.

The operating frequency of the digital core fclk has
been set to 100MHz for the given setup. This defines the
maximum possible accuracy of the turn-off slope of the
PWM signal. The computed sliding function σ(x) is then
fed to the input of the comparator shown in Fig. 4, which
is updated at the system clock rate fclk. The operating
frequency of the digital core has been chosen to be much
higher than the switching frequency of the PWM signal
driving the Buck converter (fclk � fsw). Hence, the
models derived in Sec. II for the analog domain are
still valid with very good approximation, and it is not
required to discretize the system model. On the other
hand, the output voltage error is sampled by the ADC at
a lower rate of 6.25MHz. Thus, the reaction time of the
controller to a transient on the output voltage is limited
by this rate.

IV. Results

The system has been successfully modeled in a MAT-
LAB/Simulink simulation environment. The system pa-
rameters have been chosen to represent a real-life com-
mercial application based on [21], which is a Buck
converter for wireless applications. The values of the
main system parameters of the converter are reported
in Tab. I. The sliding coefficients have been tuned in
order to achieve a good dynamic performance with a
low steady-state output voltage ripple. The used values
of the coefficients are reported in Tab. II.

TABLE I. System parameters

Parameter Value

Vbat 3.3 V

Vref 1.3 V

fsw 1.56 MHz

L 4.7 µH

C 10 µF

Parameter Value

RC 20 mΩ

RL 100 mΩ

Rn 100 mΩ

Rp 100 mΩ

fclk 100 MHz

TABLE II. Controller parameters

Parameter Value

s1 1

s2 25

Parameter Value

s3 2−4

sramp 28

The dynamic performance of the proposed digital con-
trol architecture has been tested by means of simulations
during load variations. This is a typical condition in
mobile devices, e.g. if a component wakes up from
standby mode and hence a step in the required current
occurs in a very short time period. Notwithstanding this
load variations, the DC-DC converter has to maintain a
stable output voltage. During the simulations only CCM
operation is considered. It is worth noting that the pro-
posed controller is capable to operate in Discontinuous
Conduction Mode (DCM) with only a few extensions to
the control architecture. This extensions include a zero
crossing detection of the inductor current, a readjustment
factor of the ramp coefficient and additional control logic
to handle the DCM operation.

Fig. 6 shows a variation of the load current from 0.1A
to 0.6A at time instant 5 µs. The first graph illustrates the
transient of the output voltage vo and the second graph
the variation of the inductor current iL. Fig. 7 shows the
same graphs for a load variation from 0.6A to 0.1A at
time instant 5 µs. The system has successfully reached
the steady-state before applying the load steps. Fig. 8
depicts the maximum undershoot of the output voltage
for different variations of the load current starting from a
step of 100mA up to 500mA. The results of the simula-
tions verify that the controller is able to effectively handle
both, positive and negative variations in the applied load
current. The output voltage vo shows a tight regulation
performance with a required regulation time of only a
few µs. For the whole range of applied load variations
the proposed digital sliding mode controller is able to
achieve excellent regulation performance. Furthermore,
the relation between undershoot and applied load step
remains almost linear over the whole operation range.
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Fig. 6. Output voltage and inductor current wave-
forms of a Buck converter during a positive load
transient from 0.1 A to 0.6 A.
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Fig. 7. Output voltage and inductor current wave-
forms of a Buck converter during a negative load
transient from 0.6 A to 0.1 A.

100 200 300 400 500
0

10

20

30

40

50

60

load variation [mA]

un
de

rs
ho

ot
[m

V
]

Fig. 8. Maximum undershoot of the output voltage
transient for different variations of the load current.

It is worth noting that similar results can be achieved
for the case of a Boost converter and also for DCM
operation. Hence, the ability to control different converter
topologies with a universal control structure can be
exploited, for example, in a noninverting Buck-Boost
converter, which can be operated either in Buck or
Boost mode [1]. Furthermore, with a few extensions
the proposed digital sliding mode controller is able to
operate in both CCM and DCM. When switching modes
no transient effects occur since the SMC is not based on
a linearized model as conventional linear controllers.

V. Conclusions

A nonlinear control algorithm based on the theory
of sliding mode control, with extensions in order to
guarantee a constant switching frequency and to support
different converter topologies and operating modes, has
been proposed and discussed in this paper. An imple-
mentation in the digital domain has been presented and
simulations have been shown for the case of a Buck
converter operating in CCM. The proposed controller
architecture is effectively capable of regulating the output
voltage of the Buck converter with a tight dynamic
performance and a small steady-state ripple.

Future work will focus on the development of an
algorithm for the estimation of the inductor current and
a hardware prototype to verify the simulation results.
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