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Overview

Introduction and physical context

Classical Yang-Mills theory

Lattice gauge theory

Simulating the Glasma in 2+1D
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Lattice gauge theory
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Motivation



5

Motivation

Recap: Yang-Mills equations in temporal gauge (A0 = 0)
Equations of motion

∂0π
i = ∂jF ji + ig

[
Aj ,F ji

]
∂0Ai = πi

Gauss constraint
∂iπ

i + ig
[
Ai , π

i
]

= 0

Assuming we have consistent initial conditions Ai (t0, ~x), πi (t0, ~x),
which satisfy the constraint, can we perform the “time evolution”
from t0 to t > t0 numerically without violating the constraint?
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Motivation
Standard method: finite differences

Discretize Minkowski space M as a hypercubic lattice Λ with
spacings aµ.

Λ = {x ∈M | x =
3∑

µ=0
nµâµ, nµ ∈ Z}, âµ = aµêµ ∈M (no sum),

and unit vectors êµ, e.g. ê0 = (1, 0, 0, 0)T , ê1 = (0, 1, 0, 0)T , etc.
Use finite difference approximations for derivatives, e.g. the forward
difference

∂F
µφ(x) ≡ φ(x + âµ)− φ(x)

aµ ' ∂µφ(x) +O(aµ),

and the backward difference

∂B
µ φ(x) ≡ φ(x)− φ(x − âµ)

aµ ' ∂µφ(x) +O(aµ),
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Yang-Mills theory on a lattice: first attempt

Naive approach: put Yang-Mills fields on the hypercubic lattice Λ

“Recipe” for the finite difference method:
I At each point x ∈ Λ define a field value Aµ(x) ∈ su(Nc)
I Derivatives of Aµ are approximated using finite differences ∂F

ν

or ∂B
ν

I Integrals over M are approximated as sums over Λ
In principle, this recipe yields a finite difference approximation of
the Yang-Mills equations

Problem: what about gauge symmetry?
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Yang-Mills theory on a lattice: first try

Naive approach: put Yang-Mills fields on the hypercubic lattice Λ

Gauge field in the continuum:

Aµ : M→ su(Nc)

Gauge field on the lattice:

Aµ : Λ→ su(Nc)

Discretized version of gauge transformation?

Consider a “lattice gauge transformation” Ω(x) : Λ→ SU(Nc)
acting on the gauge field Aµ:

A′µ(x) ≡ Ω(x)
(

Aµ(x) + 1
ig ∂

F
µ

)
Ω†(x)



9

Yang-Mills theory on a lattice: first attempt

Naive lattice gauge transformation:

A′µ(x) ≡ Ω(x)
(

Aµ(x) + 1
ig ∂

F
µ

)
Ω†(x)

⇒ A′µ is not traceless or hermitian, i.e. not an element of su(Nc)!

First term Ω(x)Aµ(x)Ω†(x) is traceless and hermitian.

However, the second term is neither:

1
ig Ω(x)∂F

µΩ†(x) = 1
igaµΩ(x)

(
Ω†(x + âµ)− Ω†(x)

)
= 1

igaµ
(

Ω(x)Ω†(x + âµ)− 1
)

The finite difference approximation of the derivative ∂µ in the
gauge transformation is a problem.



10

Yang-Mills theory on a lattice: first attempt

As we saw previously, gauge symmetry guarantees us that the
equations of motion (here in temporal gauge A0 = 0)

∂0π
i = ∂jF ji + ig

[
Aj ,F ji

]
∂0Ai = πi

conserve the Gauss constraint

∂iπ
i + ig

[
Ai , π

i
]

= 0

If we cannot properly formulate gauge symmetry in the discretized
version, then there is no guarantee that the discretized Gauss
constraint will not be violated.
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Yang-Mills theory on a lattice: first attempt

Second problem with this approach: how exactly should one
approximate a term like

Fµν = ∂µAν − ∂νAµ + ig [Aµ,Aν ] ?

Should we use forward differences ∂F
µ , backward differences ∂B

µ or
some other higher order finite difference scheme?

⇒ A lot of freedom in choosing the specific discretization. Should
we just guess?

Can we construct a “consistent” discretization of Yang-Mills theory
that has a conserved Gauss constraint without much guesswork?
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Yang-Mills theory on a lattice: first attempt

The naive finite difference approach to solving the Yang-Mills
equations on a lattice fails when considering gauge symmetry.

We need two “ingredients” to come up with a numerical method
that retains some notion of gauge symmetry:
I Different degrees of freedom (other than Aµ), whose gauge

transformation law does not involve derivatives of the gauge
transformation matrices Ω(x): gauge links

I A method for deriving “consistent” discretized equations of
motion with a conserved Gauss constraint: method of
variational integrators
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Variational integrators
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Variational integrators: basic idea

Variational integrators are a specific numerical integrators that
follow from a variational principle.

Usual finite difference approach:
I Vary action S to obtain equations of motion (EOM)
I Replace derivatives in EOM with finite difference

approximations to obtain discrete EOM
I Solve discrete EOM on a computer

Variational integrator approach:
I Discretize action S first (replace derivatives with finite

differences, integrals with sums, etc) to obtain discretized
action S ′

I Vary discrete action S ′ to obtain discrete EOM
I Solve discrete EOM on a computer



15

Variational integrators: basic idea

Variational integrators: “discretize first, then vary”

Advantage of a variational integrator: if the discretized action S ′
has some of the symmetry properties of the continuum action S,
then the discrete EOM will also respect these symmetries.

Example: if some symmetry of the action S leads to some
conservation law (Noethers theorem), then the discrete analogue of
that symmetry for S ′ leads to a discretized version of that
conservation law

In the context of Yang-Mills theory: a discretized version of the
Yang-Mills action with gauge symmetry leads to discrete equations
of motion that conserve a discrete version of the Gauss constraint
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Example: planetary motion

Consider a simple mechanical (i.e. not field theoretical) model:
the motion of planets around the sun

Trajectory of a planet (mass)

~r(t) = (x(t), y(t))T

Action (mass m = 1)

S[~r(t)] =
∞∫
−∞

dt
(1

2 (∂0~r)2 − V (|~r(t)|)
)

with potential (all constants set to one)

V (r) = −1
r
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Example: planetary motion

Vary the action to derive the equations of motion

δS[~r(t), δ~r ] =
∞∫
−∞

dt
(
−∂2

0~r −∇V (~r(t))
)
· δ~r

Introduce momentum
~p(t) ≡ ∂0~r(t)

Equations of motion

∂0~p(t) = −∇V (~r(t))
∂0~r(t) = ~p(t)
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Example: planetary motion

Action is invariant under rotations

~r ′ = R~r , R =
(

cosω − sinω
sinω cosω

)

Action

S[~r ′(t)] =
∞∫
−∞

dt
(1

2
(
∂0~r ′

)2 − V (
∣∣~r ′(t)

∣∣)) = S[~r(t)]

Consequence: angular momentum is conserved
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Example: planetary motion

Action is invariant under infinitesimal rotations

~r ′ = R~r , R =
(

cosω − sinω
sinω cosω

)

Expand for small angles ω

~r ′ = ~r + Ω~r +O(ω2), Ω =
(

0 −ω
ω 0

)

Write δ~r = Ω~r and vary action

δS[~r , δ~r ] =
∞∫
−∞

dt [(−∂0~p −∇V (~r)) · δ~r + ∂0 (~p · δ~r)] = 0

Note: δ~r(t) does not have compact support
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Example: planetary motion

Action is invariant under infinitesimal rotations

δS[~r , δ~r ] =
∞∫
−∞

dt [(−∂0~p −∇V (~r)) · δ~r + ∂0 (~p · δ~r)] = 0

Left term vanishes: equations of motion
Right term: yields conservation law (Noether’s first theorem)

∂0 (~p · δ~r) = 0

Use δr = Ω~r = (−ωy(t), ωx(t))T and find

∂0L = ∂0 (−px (t)y(t) + py (t)x(t)) = 0.

Angular momentum L = −pxy + py x is conserved.
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Example: planetary motion

Let’s simulate this system numerically!
Naive approach using forward differences: Forward Euler scheme

∂0~p(t) = −∇V (~r) ⇒ ∂F
0 ~p(t) = −∇V (~r(t))

∂0~r(t) = ~p(t) ⇒ ∂F
0 ~q(t) = ~p(t)

Discrete “time evolution”: time step a0 = ∆t

~p(t + ∆t) = ~p(t)−∆t∇V (~r(t))
~q(t + ∆t) = ~q(t) + ∆t~p(t)

Conserved angular momentum?

L(t) = −px (t)y(t) + py (t)x(t)
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Example: planetary motion

Animation of simulation data: trajectory ~r(t) and angular
momentum L(t) as a function of time t from Forward Euler scheme

Trajectory unstable, no conserved angular momentum
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Example: planetary motion

Variational integrator approach: formulate discretized action with
rotational symmetry built in

S[~r(t)] = ∆t
∑

t

(1
2
(
∂F

0 ~r(t)
)2
− V (|~r(t)|)

)
Invariance:

V (
∣∣~r ′(t)

∣∣) = V (|R~r(t)|) = V (|~r(t)|)

∂F
0 ~r ′(t) = R∂F

0 ~r(t), ⇒
(
∂F

0 ~r ′(t)
)2

=
(
∂F

0 ~r(t)
)2
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Example: planetary motion

Discrete action to be “varied”:

S[~r(t)] = ∆t
∑

t

(1
2
(
∂F

0 ~r(t)
)2
− V (|~r(t)|)

)

The action is now a function of the positions ~r(t) at the discrete
times t0, t1, t2, . . .

The “variation” δS[~r , δr ] is now just the total differential dS.

I will keep using the δS[~r , δr ] notation anyways, even though I’m
not using functional derivatives.
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Example: planetary motion

Useful formulae for finite differences

The product rule(s)

∂B
0 (f (t)g(t)) = (f (t)g(t)− f (t −∆t)g(t −∆t)) /∆t

+ f (t −∆t)g(t)/∆t − f (t −∆t)g(t)/∆t
= ∂B

0 f (t)g(t) + f (t −∆t)∂B
0 g(t)

and

∂F
0 (f (t)g(t)) = ∂F

0 f (t)g(t) + f (t + ∆t)∂F
0 g(t)

Switching between forward/backward differences

∂F
0 f (t) = ∂B

0 f (t + ∆t)



26

Example: planetary motion

Variation of the discrete action

δS[~r , δ~r ] = ∆t
∑

t

(
∂F

0 ~r(t) · ∂F
0 δ~r(t)−∇V (|~r(t)|) · δ~r(t)

)
= ∆t

∑
t

[ (
−∂B

0 ∂
F
0 ~r(t)−∇V (|~r(t)|)

)
· δ~r(t)

+ ∂F
0

(
∂F

0 ~r(t) · δ~r(t)
) ]

= 0

Second term vanishes, because δr(t) has “compact support”.
Introduce ~p(t) = ∂F

0 ~r(t). The discrete EOM then read

∂B
0 ~p(t) = −∇V (|~r(t)|)
∂F

0 ~r(t) = ~p(t)

Note: use of backward difference in first EOM
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Example: planetary motion

Infinitesimal rotation with angle ω

~r ′ = ~r + Ω~r +O(ω2) = ~r + δ~r +O(ω2), Ω =
(

0 −ω
ω 0

)

Variation of action due to rotation

δS[~r , δ~r ] = ∆t
∑

t

[ (
−∂B

0 ∂
F
0 ~r(t)−∇V (|~r(t)|)

)
· δ~r(t)

+ ∂F
0

(
∂F

0 ~r(t) · δ~r(t)
) ]

= 0

I First term vanishes (EOM)
I Second term under the sum must vanish, but δr(t) does not

have compact support
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Example: planetary motion

In order to get δS[~r , δ~r ] = 0, the discrete conservation law must
hold:

∂F
0

(
∂F

0 ~r(t) · δ~r(t)
)

= 0

⇒ discrete angular momentum

L(t) = −∂F
0 x(t)y(t) + ∂F

0 y(t)x(t) = −px (t)y(t) + py (t)x(t)

is conserved
∂F

0 L(t) = 0

Everything completely analogous to the continuous model!
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Example: planetary motion

Animation of simulation data: trajectory ~r(t) and angular
momentum L(t) as a function of time t from variational integrator

Trajectory stable, conserved angular momentum
(up to numerical precision)
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Example: planetary motion

Not all symmetries of the original (continuous) problem can be
easily built into a discretized model.

Example: energy conservation

Energy conservation follows from the invariance under time
translations t ′ = t + ε.

∂0E = ∂0

(1
2 (∂0~r(t))2 + V (|~r(t)|)

)
= 0

Discretizing the time coordinate breaks this symmetry and energy
is not exactly conserved in the simulation.
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Example: two-body problem

One more example: the two body problem (m1 = m2 = 1)

S [~r1(t),~r2(t)] =
∫

dt
(1

2 (∂0~r1)2 + 1
2 (∂0~r2)2 − V (|~r1(t)−~r2(t)|)

)
Equations of motion from δS = 0:

~p1 ≡ ∂0~r1

~p2 ≡ ∂0~r2

∂0~p1 = −∇(1)V (|~r1 −~r2|)
∂0~p2 = −∇(2)V (|~r1 −~r2|)
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Example: two-body problem

S [~r1(t),~r2(t)] =
∫

dt
(1

2 (∂0~r1)2 + 1
2 (∂0~r2)2 − V (|~r1(t)−~r2(t)|)

)
Symmetries and conservation laws:
I Invariance under rotations: ~r ′i = R~ri
⇒ angular momentum conservation

∂0L(t) = 0

I Invariance under spatial translations ~r ′i = ~r + ~ε
⇒ linear momentum conservation

∂0(~p1 + ~p2) = 0

I Invariance under time translations t ′ = t + ε
⇒ energy conservation

∂0E = ∂0

(1
2
~p2

1 + 1
2
~p2

2 + V (|~r1 −~r2|)
)

= 0
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Example: two-body problem

Discretized action for the two-body problem

S [~r1(t),~r2(t)] = ∆t
∑

t

(1
2
(
∂F

0 ~r1
)2

+ 1
2
(
∂F

0 ~r2
)2
− V (|~r1(t)−~r2(t)|)

)
Symmetries and conservation laws:
I Invariance under rotations: ~r ′i = R~ri
⇒ angular momentum conservation

∂F
0 L(t) = 0

I Invariance under spatial translations ~r ′i = ~r + ~ε
⇒ linear momentum conservation

∂F
0 (~p1(t) + ~p2(t)) = 0

I Invariance under time translations t ′ = t + ε
⇒ energy conservation
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Example: two-body problem

Motion of two bodies using variational integrator

Discrete angular momentum and linear momentum exactly
conserved.
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Example: two-body problem

Comparison: simple forward Euler scheme

Discrete angular momentum not conserved. Linear momentum
happens to be conserved.
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Variational integrators: summary

I The method of variational integrators removes a lot of
guesswork when deriving numerical schemes to solve initial
value problems.

I Discretized actions can “keep” symmetries of their respective
continuum analogues

I Symmetries of discretized actions lead to discretized
conservation laws (Noether’s theorem - discrete version)

Yang-Mills on the lattice and gauge symmetries
We will construct a discretized action for Yang-Mills theory, which
“keeps” gauge symmetry.
⇒ Conserved Gauss constraint when solving Yang-Mills equations
numerically
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Variational integrators: summary

Literature:
I J. E. Marsden and M. West, “Discrete mechanics and

variational integrators”, Acta Numerica, 2001
I Adrián J. Lew, Pablo Mata A, “A Brief Introduction to

Variational Integrators”, chapter 5 of Peter Betsch (editor),
“Structure-preserving Integrators in Nonlinear Structural
Dynamics and Flexible Multibody Dynamics”, CISM
International Centre for Mechanical Sciences 2016, Springer,
Cham
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Wilson lines
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Wilson lines: definition
Alternative degrees of freedom to Aµ: Wilson lines

Consider a continuous path C given by x(s) : [0, 1]→M with
parameter s ∈ [0, 1] and a gauge field Aµ. The Wilson line
UC ∈ SU(Nc) of the gauge field Aµ is given by

UC[Aµ] ≡ P exp

−ig
1∫

0

ds dxµ(s)
ds Aµ(x(s))

 ,
where P is the path-ordering symbol. The Wilson line is also
sometimes written as

UC[Aµ] ≡ P exp

−ig
∫
C

dxµAµ

 .
The Wilson line maps a gauge field Aµ to an element in SU(Nc)
given a path C.
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Wilson lines: definition

Path-ordered exponential as a series (with A(s) = dxµ(s)
ds Aµ(x(s)))

P exp

−ig
1∫

0

dsA(s)

 = 1 +
∞∑

n=1

1
n!P

−ig
1∫

0

dsA(s)

n

= 1 +
∞∑

n=1

1
n! (−ig)n

1∫
0

ds1

1∫
0

ds2 · · ·
1∫

0

dsnP [A(s1)A(s2) . . .A(sn)]

= 1 +
∞∑

n=1
(−ig)n

1∫
0

ds1

s1∫
0

ds2 · · ·
sn−1∫
0

dsnA(s1)A(s2) . . .A(sn)
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Wilson lines: definition

Path-ordered exponential as a product.

Discretize interval s ∈ [0, 1] as set: s ∈ {s0, s1, · · · , sn} with
s0 = 0, sn = 1 and ∆s = 1/n.

P exp

−ig
1∫

0

dsA(s)

 = lim
n→∞

P
n∏

i=0
(1− ig∆sA(si ))

= lim
n→∞

(1− ig∆sA(sn)) (1− ig∆sA(sn−1)) · · · (1− ig∆sA(s0))

where
A(s) = dxµ(s)

ds Aµ(x(s))
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Wilson lines: products

Consider two continuous paths C1 and C2: C1 starts at z1 and ends
at z2 (parameterized by x1(s)), C2 starts at z2 and ends at z3
(parameterized by x2(s)). Define the “glued together” path C
x(s) : [0, 1]→M:

x(s) =
{

x1(2s) 0 ≤ s < 1
2 ,

x2(2(s − 1
2 )) 1

2 ≤ s ≤ 1.

The Wilson line UC[Aµ] is then given by the product of UC1 [Aµ]
and UC2 [Aµ]:

UC[Aµ] = UC2 [Aµ]UC1 [Aµ].

(Use product definition of UC for explicit proof)
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Wilson lines: inverse

Consider the Wilson line UC[Aµ]. The Wilson line is an element of
SU(Nc). What’s the inverse (UC[Aµ])−1 = U†C[Aµ] of UC[Aµ]?
Approximation using products:

U†C[Aµ] =

P exp

−ig
1∫

0

dsA(s)

†

≈ [(1− ig∆sA(sn)) (1− ig∆sA(sn−1)) · · · (1− ig∆sA(s0))]†

= (1 + ig∆sA(s0)) · · · (1 + ig∆sA(sn−1)) (1 + ig∆sA(sn))
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Wilson lines: inverse

Approximated inverse Wilson line:

U†C[Aµ] ≈ (1 + ig∆sA(s0)) · · · (1 + ig∆sA(sn−1)) (1 + ig∆sA(sn))

This is simply the Wilson line along the reversed path C−1

parametrized by x ′(s) = x(1− s).

Reparametrize: s ′ = 1− s, ∆s ′ = s′n−s′0
n = s0−sn

n = −∆s

U†C[Aµ] ≈
(
1− ig∆s ′A(1− s ′0)

) (
1− ig∆s ′A(1− s ′1)

)
· · ·

· · ·
(
1− ig∆s ′A(1− s ′n−1)

) (
1− ig∆s ′A(1− s ′n)

)
Take limit n→∞:

U†C[Aµ] = P exp

−ig
1∫

0

ds ′ dx ′µ(s ′)
ds ′ Aµ(x ′(s ′))

 = UC−1 [Aµ].
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Wilson lines: gauge transformations

Consider a path C, a gauge field Aµ and a gauge transformation Ω.
The Wilson line UC[A′µ] of the gauge transformed field

A′µ = Ω
(

Aµ + 1
ig ∂µ

)
Ω†

is given by
UC[A′µ] = Ω(x(1))UC[Aµ]Ω†(x(0))

where x(1) and x(0) are the end and start points of C.
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Wilson lines: gauge transformations

Proof of gauge transformation behavior:

A′µ = Ω
(

Aµ + 1
ig ∂µ

)
Ω†,

UC[A′µ] = Ω(x(1))UC[Aµ]Ω†(x(0))

Define

UC[Aµ](s, s0) = P exp

−ig
s∫

s0

ds ′ dxµ(s ′)
ds ′ Aµ(x(s ′))

 .
such that UC[Aµ](1, 0) = UC[Aµ].
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Wilson lines: gauge transformations

Take derivative with respect to parameter s at the end point:

dUC[Aµ](s, s0)
ds ≡ lim

∆s→0

UC[Aµ](s + ∆s, s0)− UC[Aµ](s, s0)
∆s

= lim
∆s→0

UC[Aµ](s + ∆s, s)− 1
∆s UC[Aµ](s, s0)

= lim
∆s→0

1− ig
∫ s+∆s

s ds ′ dxµ
ds′ Aµ(x(s ′))− 1

∆s UC[Aµ](s, s0)

= −ig dxµ
ds Aµ(x(s))UC[Aµ](s, s0)
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Wilson lines: gauge transformations

Wilson line UC along C fulfills differential equation( d
ds + ig dxµ

ds Aµ(x(s))
)

UC[Aµ](s, s0) = 0

Together with the boundary condition UC[Aµ](s0, s0) = 1, this is
an equivalent definition to the series and product definitions from
before.
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Wilson lines: gauge transformations

Now take (dropping “[Aµ]” for a more compact notation)

U ′C(s, s0) = Ω(x(s))UC(s, s0)Ω†(x(s0)),

where Ω(s) = Ω(x(s)) is an arbitrary gauge transformation along C
and compute derivative w.r.t. s:

dU ′C(s, s0)
ds = dΩ(s)

ds UC(s, s0)Ω†(s0) + Ω(s)dUC(s, s0)
ds Ω†(s0)

= ∂µΩ(x)dxµ
ds UC(s, s0)Ω†(s0)

+ igΩ(s)dxµ
ds Aµ(x(s))UC(s, s0)Ω†(s0)

= ig dxµ
ds

(
ΩAµΩ† + 1

ig Ω∂µΩ†
)

x=x(s)
Ω(s)UC(s, s0)Ω†(s0)
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Wilson lines: gauge transformations
Continuation from last slide:
dU ′C(s, s0)

ds = ig dxµ
ds

(
ΩAµΩ† + 1

ig Ω∂µΩ†
)

x=x(s)
Ω(s)UC(s, s0)Ω†(s0)

= ig dxµ
ds A′µ(x(s))U ′C(s, s0)

Therefore, U ′C(s, s0) fulfills the differential equation for Wilson lines
with A′µ in place of Aµ.

The boundary condition
UC(s0, s0) = 1

also holds for U ′C(s0, s0):
U ′C(s0, s0) = Ω(s0)UC(s0, s0)Ω†(s0)

= Ω(s0)Ω†(s0)
= 1.
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Wilson lines: gauge transformations

The Wilson line UC along the path C is given by

UC[Aµ] ≡ P exp

−ig
1∫

0

ds dxµ(s)
ds Aµ(x(s))

 ,
and transforms according to

U ′C[Aµ] = Ω(x(1))UC[Aµ]Ω†(x(0)).

Note: the gauge transformation law for Wilson lines does not
involve derivatives of Ω(x).

If all this was already familiar: in differential geometry Wilson lines
are known as holonomies or parallel transport.
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Wilson loops

Now consider closed paths (loops) C with x0 = x(1) = x(0), then
we have

U ′C[Aµ] = Ω(x0)UC[Aµ]Ω†(x0)

and in particular

tr
[
U ′C[Aµ]

]
= tr [UC[Aµ]] .

The trace of a Wilson loop is gauge invariant.

Traces of Wilson loops are physical observables (in principle).
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Wilson action
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Gauge links

Back to the lattice discretization of M:

Λ = {x ∈M | x =
3∑

µ=0
nµâµ, nµ ∈ Z}, âµ = aµêµ (no sum),

The shortest possible arcs on this lattice connect nearest neighbors
(e.g. x and x + âµ). The Wilson lines along these shortest arcs are
called gauge links.

Instead of Aµ we will use gauge links as degrees of freedom on the
lattice.

From now on: no Einstein sum convention, only explicit sums



55

Gauge links

Consider a path from x to x + âµ:

xν(s) = xν + s aµδνµ, s ∈ [0, 1] (no sum implied)

Gauge link:

Ux→x+âµ = P exp

−ig
1∫

0

ds
3∑

ν=0

dxν(s)
ds Aν(x(s))


= P exp

−ig
1∫

0

ds
3∑

ν=0
aµδνµAν(x(s))


= P exp

−ig
1∫

0

dsaµAµ(x(s))


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Gauge links

Gauge link from x to x + âµ:

Ux→x+âµ = P exp

−ig
1∫

0

dsaµAµ(x(s))


Gauge transformations:

U ′x→x+âµ = Ω(x + âµ)Ux→x+âµΩ†(x)

If the lattice spacing aµ goes to zero (continuum limit), we can use
the mid-point rule to approximate the integrals:

Ux→x+âµ ≈ exp
(
−igaµAµ(x(1

2)) +O(a3)
)

≈ exp
(
−igaµAµ(x + 1

2 âµ) +O(a3))
)
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Gauge links

In lattice gauge theory, the most common convention is to define

Ux ,µ = [Ux→x+âµ ]† ≈ exp
(

igaµAµ(x + 1
2 âµ)

)
as the gauge link from x to x + âµ.

Notation: Ux ,µ
I “x” denotes the starting point
I “µ” denotes that the gauge link is aligned with lattice axis µ

Shorthand: “x + µ” denotes the point x shifted by one lattice
spacing along axis µ, i.e. “x + µ” is short for x + âµ

Gauge transformations:

U ′x ,µ = ΩxUx ,µΩ†x+µ
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Plaquettes and field strength

The smallest possible Wilson loop that we can formulate is a 1× 1
loop, known as a “plaquette”.

The plaquette Ux ,µν is a Wilson loop starting at x given by

Ux ,µν ≡ Ux ,µUx+µ,νUx+µ+ν,−µUx+ν,−ν

= Ux ,µUx+µ,νU†x+ν,µU†x ,ν

where we define Ux+µ,−µ = U†x ,µ, etc.

Gauge transformation:

U ′x ,µν = ΩxUx ,µνΩ†x

Trace of the plaquette is gauge invariant:

tr[U ′x ,µν ] = tr[Ux ,µν ]
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Plaquettes and field strength

Plaquette in the continuum limit aµ → 0:

Simple case first: assume that gauge field Aµ is Abelian, then all
gauge links Ux ,µ on the lattice commute.

Ux ,µ ≈ exp
(

igaµAµ(x + 1
2 âµ) +O(a3)

)
Compute plaquette:

Ux ,µν ≡ Ux ,µUx+µ,νUx+µ+ν,−µUx+ν,−ν

= Ux ,µUx+µ,νU†x+ν,µU†x ,ν

≈ exp
(

igaµaν
(
∂F
µAν(x + 1

2 âν)− ∂F
ν Aµ(x + 1

2 âµ)
))

' exp
(

igaµaνFµν(x + 1
2 âµ + 1

2 âν) +O(a4)
)

Note: no Einstein summation over µ, ν, . . .
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Plaquettes and field strength

Use Baker-Campbell-Hausdorff formula derive that

Ux ,µν ' exp
(

igaµaνFµν(x + 1
2 âµ + 1

2 âν) +O(a4)
)

also if Aµ is non-Abelian.

Baker-Campbell-Hausdorff: given two algebra elements
X ,Y ∈ su(Nc), we have Z ∈ su(Nc) such that

eiX eiY = eiZ

and

Z = X + Y + i
2 [X ,Y ]

− 1
12 [X , [X ,Y ]] + 1

12 [Y , [X ,Y ]] + . . .



61

Plaquettes and field strength

Plaquette in the continuum limit aµ → 0:

Ux ,µν ' exp
(

igaµaνFµν(x + 1
2 âµ + 1

2 âν) +O(a4)
)

' 1 + igaµaνFµν −
1
2 (gaµaνFµν)2 +O(a4)

Combine this to

tr
[
1− 1

2Ux ,µν −
1
2U†x ,µν

]
' 1

2 (gaµaν)2 tr
[
F 2
µν

]
+O(a6)

Note: order of the error term is not immediately obvious.
For a detailed derivation (and more), see [arXiv:hep-lat/0203008]
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The Wilson action

Now we can construct an approximation of the Yang-Mills action
using plaquettes.

1) Rewrite Yang-Mills action in “F 2” terms with lowered indices.

S[Aµ] =
∫

d4x

∑
i

tr
[
F 2

0i

]
− 1

2
∑
i ,j

tr
[
F 2

ij

]
2) Approximate integral over M as sum over Λ

S[Aµ] ≈ V
∑

x

∑
i

tr
[
F 2

0i

]
− 1

2
∑
i ,j

tr
[
F 2

ij

]
with space-time cell volume V =

∏
µ aµ
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The Wilson action

Yang-Mills action:

S[Aµ] ≈ V
∑

x

∑
i

tr
[
F 2

0i

]
− 1

2
∑
i ,j

tr
[
F 2

ij

]
3) Replace “F 2” terms with plaquettes

S[Aµ] ' V
∑

x

(∑
i

2
(ga0ai )2 tr

[
1− 1

2Ux ,0i −
1
2U†x ,0i

]

−
∑
i ,j

1
(gaiaj)2 tr

[
1− 1

2Ux ,ij −
1
2U†x ,ij

])
+O(a2)

with V =
∏
µ aµ.

This approximation of the Yang-Mills action with 1× 1 loops is the
Wilson action.
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The Wilson action

Rearrange some terms, drop additive constant:

S[U] = − V
g2

∑
x

(∑
i

2
(a0ai )2 Re tr [Ux ,0i ]−

∑
i ,j

1
(aiaj)2 Re tr [Ux ,ij ]

)

Original papers:
I K. G. Wilson, “Confinement of Quarks”, PRD 10 (1974),
∼ 4800 citations

I J. .B. Kogut and L. Susskind, “Hamiltonian Formulation of
Wilson’s Lattice Gauge Theories”, PRD 11 (1975),
∼ 1700 citations
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Lattice gauge invariance

The Wilson action is invariant under a discrete version of gauge
transformations: lattice gauge transformations

Instead of Ω : M→ SU(Nc), we now have Ω : Λ→ SU(Nc) with
gauge links Ux ,µ transforming as

U ′x ,µ = ΩxUx ,µΩ†x+µ,

and plaquettes transforming as

U ′x ,µν = ΩxUx ,µνΩ†x .

The trace of the plaquette is invariant

tr
[
U ′x ,µν

]
= tr

[
Ux ,µν

]
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Lattice gauge invariance

The Wilson action

S[U] = − V
g2

∑
x

(∑
i

2
(a0ai )2 Re tr [Ux ,0i ]−

∑
i ,j

1
(aiaj)2 Re tr [Ux ,ij ]

)

is constructed from traces over plaquette and is invariant, i.e.

S[U ′] = S[U].

We therefore have a discretized action
I with the correct continuum limit, up to errors O(a2).
I with a discrete version of gauge invariance.

Even better approximations exist (increasing the order of the error
term) and are gauge invariant as long as they are constructed from
closed Wilson loops on the lattice.
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Alternative form of the Wilson action

There is a different way of writing the Wilson action, where the
continuum limit is easier to see.

Introduce “L-shaped” variables

Cx ,µν = Ux ,µUx+µ,ν − Ux ,νUx+ν,µ

which transform like

C ′x ,µν = ΩxCx ,µνΩ†x+µ+ν
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Alternative form of the Wilson action

xx x+ µ̂+ ν̂x+ µ̂+ ν̂

x+ µ̂x+ µ̂

x+ ν̂x+ ν̂

a) path traced by Ux ,µν

Ux ,µν = Ux ,µUx+µ,νU†x+ν,µU†x ,ν

Gauge transformation

U ′x ,µν = ΩxUx ,µνΩ†x

xx x+ µ̂+ ν̂x+ µ̂+ ν̂

x+ µ̂x+ µ̂

x+ ν̂x+ ν̂

b) path traced by Cx ,µν

Cx ,µν = Ux ,µUx+µ,ν−Ux ,νUx+ν,µ

Gauge transformation

C ′x ,µν = ΩxCx ,µνΩ†x+µ+ν
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Alternative form of the Wilson action

A quick calculation shows:

1
2Cx ,µνC †x ,µν = 1− 1

2Ux ,µν −
1
2U†x ,µν

This is an exact relation.

The Wilson action can be written as

S[U] = V
g2

∑
x

(∑
i

1
(a0ai )2 tr

[
Cx ,0iC †x ,0i

]
−
∑
i ,j

1
2 (aiaj)2 tr

[
Cx ,ijC †x ,ij

] )

Define C̃x ,µν = 1
gaµaν Cx ,µν :

S[U] = V
∑

x

(∑
i

tr
[
C̃x ,0i C̃ †x ,0i

]
−
∑
i ,j

1
2tr

[
C̃x ,ij C̃ †x ,ij

] )



70

Alternative form of the Wilson action

Wilson action:

S[U] = V
∑

x

(∑
i

tr
[
C̃x ,0i C̃ †x ,0i

]
−
∑
i ,j

1
2tr

[
C̃x ,ij C̃ †x ,ij

] )

Yang-Mills action:

S[A] =
∫

d4x

∑
i

tr
[
F0iF †0i

]
− 1

2
∑
i ,j

tr
[
FijF †ij

]
The above form of the Wilson action can be a good starting point
for making modifications.
I A. Ipp, DM, “Implicit schemes for real-time lattice gauge

theory”, [arXiv:1804.01995 [hep-lat]]
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Variation of the Wilson action
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Variation of the Wilson action

Obtain discretized equations of motion and discretized Gauss
constraint from variation of the Wilson action:

S[U] = − V
g2

∑
x

(∑
i

2
(a0ai )2 Re tr [Ux ,0i ]−

∑
i ,j

1
(aiaj)2 Re tr [Ux ,ij ]

)

Degrees of freedom: gauge links Ux ,µ

Variation with respect to gauge links:

δS[U, δU] = 0

Note: since gauge links are elements of SU(Nc), we can’t vary the
matrix elements of Ux ,µ independently.

Ux ,µU†x ,µ = 1, det Ux ,µ = 1
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Variation of the Wilson action

We need to make sure that we perform the variation of S[U]
“without leaving” SU(Nc), i.e. without violating the unitary
constraint

Ux ,µU†x ,µ = 1,

and the determinant constraint

det Ux ,µ = 1.

Geometrical picture: SU(2) is isomorphic to S3 (3-sphere)
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Variation of the Wilson action

Two approaches to correctly varying S[U]:
1. Method of Lagrangian multipliers
Example: U(1) lattice gauge theory

S ′[U, λ] = − V
g2

∑
x

∑
i

1
(a0ai )2 ReUx ,0i −

∑
i ,j

1
2 (aiaj)2 ReUx ,ij



+ V
∑
x ,µ

λx ,µ
(
|Ux ,µ|2 − 1

)
with

δS ′[U, λ; δU, δλ] = 0

Potentially very tedious calculation, especially for SU(Nc)
2. Construct constraint preserving perturbation δUx ,µ
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Variation of the Wilson action

Easier approach: choose δUx ,µ such that the perturbed gauge link
Ũx ,µ = Ux ,µ + δUx ,µ is still an element of SU(Nc) if δUx ,µ is
infinitesimal, i.e.

Ũx ,µŨ†x ,µ ' 1 +O(|δU|2), det Ũx ,µ ' 1 +O(|δU|2).

Then, perturb action:

S[Ũ] ' S[U] + δS[U, δU] +O(|δU|2)

This way δS[U, δU] corresponds to the constrained variation of the
action.
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Variation of the Wilson action

Consider the perturbed matrix Ũ = U + δU, where δU is a “small”
perturbation. We have
I det Ũ = det U det

[
1 + U†δU

]
' 1 + tr

[
U†δU

]
+O(|δU|2)

I Ũ†Ũ ' 1 + δU†U + U†δU +O(|δU|2)
The perturbation needs to satisfy

δU† + U†δUU† = 0,

tr
[
U†δU

]
= 0.

These equations are satisfied by the following form:

δU ≡ iδAU,

where δA ∈ su(Nc) is a “small”, traceless, hermitian matrix.
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Variation of the Wilson action

Procedure: perturb each link according to

Ux ,µ → Ũx ,µ = Ux ,µ + igaµδAx ,µUx ,µ,

and compute the change of the action

S[Ũ] ' S[U] + δS[U, δA] +O(|δA|2).

The variation δS is given by

δS[U, δA] = V
∑
x ,µ,a

“ δS
δAa

x ,µ
” δAa

x ,µ.

The above form requires summation by parts.
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Gauss constraint on the lattice

We explicitly work through one example: the derivation of the
discretized Gauss constraint

Wilson action:

S[U] = − V
g2

∑
x

(∑
i

2
(a0ai )2 Re tr [Ux ,0i ]−

∑
i ,j

1
(aiaj)2 Re tr [Ux ,ij ]

)

Variation w.r.t. Ux ,0: Gauss constraint

Ux ,0i = Ux ,0Ux+0,iU†x+i ,0U†x ,i
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Gauss constraint on the lattice

Variation of the relevant term:

δ
∑
x ,i

tr [Ux ,0i ] =
∑
x ,i

tr
[
δUx ,0Ux+0,iU†x+i ,0U†x ,i + Ux ,0Ux+0,iδU†x+i ,0U†x ,i

]

=
∑
x ,i

tr
[
δUx ,0Ux+0,iU†x+i ,0U†x ,i + U†x ,iUx ,0Ux+0,iδU†x+i ,0

]

=
∑
x ,i

tr
[
iga0δAx ,0Ux ,0i − iga0Ux+i ,−i0δAx+i ,0

]
= iga0∑

x ,i
tr
[
δAx ,0 (Ux ,0i − Ux ,−i0)

]
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Gauss constraint on the lattice

Variation of the relevant term:

δ
∑
x ,i

tr [Ux ,0i ] = iga0∑
x ,i

tr
[
δAx ,0 (Ux ,0i − Ux ,−i0)

]
Take real part:

δ
∑
x ,i

Re tr [Ux ,0i ] = −ga0∑
x ,i

Im tr
[
δAx ,0 (Ux ,0i − Ux ,−i0)

]
= −ga0∑

x ,i
Im tr

[
δAx ,0 (Ux ,0i + Ux ,0−i )

]
= −ga0 ∑

x ,i ,a
δAa

x ,0Im tr
[
ta (Ux ,0i + Ux ,0−i )

]
= −ga0

2
∑
x ,a

δAa
x ,0
∑

i
Pa (Ux ,0i + Ux ,0−i )

with Pa(X ) ≡ 2 Im tr [taX ].
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Gauss constraint on the lattice

Variation of the Wilson action w.r.t. temporal links Ux ,0:

δS[U, δA] = V
∑
x ,a

δAa
x ,0
∑

i

1
ga0(ai )2 Pa (Ux ,0i + Ux ,0−i )

Vary all Ux ,0 independently and require δS = 0:

∑
i

1
ga0 (ai )2 Pa (Ux ,0i + Ux ,0−i ) = 0.

This is the discrete Gauss constraint.

Compare to continuum limit:∑
i

DiF 0i (x) =
∑

i

(
∂iF 0i (x) + ig

[
Ai (x),F 0i (x)

])
= 0
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Gauss constraint on the lattice

Check the continuum limit for the discrete Gauss constraint:∑
i

1
ga0 (ai )2 Pa (Ux ,0i + Ux ,0−i )

=
∑

i

1
ga0 (ga0ai )2 Pa (Ux ,0i + Ux ,−iUx−i ,i0Ux−i ,i )

=
∑

i

1
(ai )2 Pa

(
Ux ,0i − U†x−i ,iU

†
x−i ,i0U†x ,−i

)
=
∑

i

1
ga0 (ai )2 Pa

(
Ux ,0i − U†x−i ,iUx−i ,0iUx−i ,i

)
Then use

Ux ,0i ' exp
(
iga0aiF0i (x̃) +O(a4)

)
,

where x̃ = x + 1
2 â0 + 1

2 âi is the center of the plaquette.
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Gauss constraint on the lattice

Check the continuum limit for the discrete Gauss constraint:

Pa (Ux ,0i ) ' Pa
(

exp
(
iga0aiF0i (x̃)

))
' Pa

(
1 + iga0aiF0i (x̃)

)
' ga0aiF a

0i (x̃)

and

Pa
(
U†x−i ,iUx−i ,0iUx−i ,i

)
' ga0aiF a

0i (x̃ − âi )

+
∑
b,c

(
gai
)2

a0f abcAb
i (x − 1

2 âi )F c
0i (x̃ − âi )
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Gauss constraint on the lattice

Check the continuum limit for the discrete Gauss constraint:

Insert into original expression:
∑

i

1
ga0 (ai )2 Pa

(
Ux ,0i − U†x−i ,iUx−i ,0iUx−i ,i

)
'
∑

i

1
ai

(
F a

0i (x̃)− F a
0i (x̃ − âi )

)
+
∑
i ,b,c

gf abcAb
i (x − 1

2 âi )F c
0i (x̃ − âi )

'
∑

i
∂iF a

0i (x) +
∑
i ,b,c

gf abcAb
i (x)F c

0i (x)

= 0

The discrete Gauss constraint has the correct continuum limit.
Determining the exact order of the error term takes more work:
it’s O(a2) – same as the Wilson action.
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Equations of motion on the lattice

We find the equations of motion (EOM) by varying S[U] with
respect to spatial links Ux ,i .

Discrete equations of motion

1
(a0ai )2 Pa (Ux ,i ,0 + Ux ,i ,−0) =

∑
j

1
(aiaj)2 Pa (Ux ,i ,j + Ux ,i ,−j)

Discrete Gauss constraint∑
i

1
(a0ai )2 Pa (Ux ,0,i + Ux ,0,−i ) = 0

⇒ Visualization of the EOM and the constraint



86

Gauss constraint conservation on the lattice

The discrete Gauss constraint is conserved by the discrete EOM.

This can be checked directly using the explicit forms of the
constraint and the EOM (not very interesting) or more generally by
making an argument based on lattice gauge invariance.

The Wilson action S[U] is invariant under lattice gauge
transformations.

S[U ′] = S[U]

with
U ′x ,µ = ΩxUx ,µΩ†x+µ,µ

Independent of the exact form of S[U], the Gauss constraint is
conserved by the discrete EOM.
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Gauss constraint conservation on the lattice
Lattice gauge invariance also implies invariance under infinitesimal
transformations. We write

Ωx = exp (igαx ) ' 1 + igαx +O(|α|2)

A gauge link transforms according to

U ′x ,µ = ΩxUx ,µΩ†x+µ

' (1 + igαx ) Ux ,µ (1− igαx+µ) +O(|α|2)

' Ux ,µ − ig
(
Ux ,µαx+µU†x ,µ − αx

)
Ux ,µ +O(|α|2)

' Ux ,µ − igaµDF
µαxUx ,µ +O(|α|2)

The infinitesimal gauge transformation is of the form

U ′x ,µ = Ux ,µ + δUx ,µ = Ux ,µ + igaµδAx ,µUx ,µ

with δAx ,µ = −DF
µαx .
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Gauss constraint conservation on the lattice

Apply infinitesimal transformation to action S[U]

S[U ′] = S[U] + δS[U, δA] +O(|δA|2)

where
δS[U, δA] = V

∑
x ,µ,a

δS
δAa

x ,µ
δAa

x ,µ

with δAa
x ,µ = −

(
DF
µαx

)a
.

Due to gauge invariance S[U ′] = S[U] it must hold that

∑
x ,µ,a

δS
δAa

x ,µ

(
DF
µαx

)a
= 0.



89

Gauss constraint conservation on the lattice
Gauge invariance implies the relation∑

x ,µ,a

δS
δAa

x ,µ

(
DF
µαx

)a
= 0.

where
(
DF
µαx

)a
= 2 tr

[
taDF

µαx
]
. We find

(
DF
µαx

)a
= 2 tr

[
ta
(

Ux ,µαx+µU†x ,µ − αx
aµ

)]

=
∑

b

1
aµ
(
Uab

x ,µα
b
x+µ − αa

x

)
=
∑

b
DF ,ab
µ αb

x

where the adjoint representation matrix Uab
x ,µ of Ux ,µ is given by

Uab
x ,µ = 2 tr

[
taUx ,µtbU†x ,µ

]
.
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Gauss constraint conservation on the lattice

Expression from previous slide

0 =
∑
x ,µ,a

δS
δAa

x ,µ

(
DF
µαx

)a
=

∑
x ,µ,a,b

δS
δAa

x ,µ
DF ,ab
µ αb

x

Using summation by parts we find

∑
x ,µ,a,b

δS
δAa

x ,µ
DF ,ab
µ αb

x = −
∑

x ,µ,a,b
DB,ab
µ

δS
δAb

x ,µ
αa

x = 0.

This must vanish for arbitrary αa
x , therefore

∑
µ,b

DB,ab
µ

δS
δAb

x ,µ
= 0
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Gauss constraint conservation on the lattice

Lattice gauge invariance implies the conservation law

∑
µ,b

DB,ab
µ

δS
δAb

x ,µ
= 0,

which holds even if the Euler-Lagrange eqs. are not fulfilled.

Recall from Yang-Mills theory (continuum limit):

∑
µ

Dµ
δS[A]
δAµ(x) = 0.

We can use this to show that if the EOM δS
δAa

x,i
are satisfied, the

Gauss constraint δS
δAa

x,0
is conserved.

⇒ The constraint also holds on the lattice!
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Temporal gauge

Discrete equation of motion

1
(a0ai )2 Pa (Ux ,i ,0 + Ux ,i ,−0) =

∑
j

1
(aiaj)2 Pa (Ux ,i ,j + Ux ,i ,−j)

Discrete Gauss constraint∑
i

1
(a0ai )2 Pa (Ux ,0,i + Ux ,0,−i ) = 0

Same as in the continuum, the discrete EOM require gauge fixing
to become solvable initial value problems.

Temporal gauge condition:

A0(x) = 0, ∀x ∈M, ⇒ Ux ,0 = 1, ∀x ∈ Λ
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Temporal gauge

Realizability of a gauge condition G [Aµ] = 0:

Suppose Aµ does not satisfy the gauge condition G [Aµ] 6= 0. G is
realizable if there exists a gauge transformation Ω such that
A′µ = Ω(Aµ + 1

ig ∂µ)Ω† satisfies G [A′µ] = 0.

Temporal gauge on the lattice is realizable as well.
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Temporal gauge

Consider a configuration of links Ux ,µ on Λ such that Ux ,0 6= 1.

Perform lattice gauge transformation Ωx :

U ′x ,µ = ΩxUx ,µΩ†x+µ

Enforce temporal gauge:

U ′x ,0 = ΩxUx ,0Ω†x+0 = 1

Solve for Ωx+0:

Ωx+0 = ΩxUx ,0

= Ωx−0Ux−0,0Ux ,0

= . . .Ux−3·0̂,0Ux−2·0̂,0Ux−0̂,0Ux ,0,

which is a discretization of the temporal Wilson line used in the
continuum version of temporal gauge.
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Temporal gauge

Temporal gauge simplifies Wilson loops involving a time direction:

Ux ,0i = Ux ,0Ux+0,iU†x+i ,0U†x ,i
= Ux+0,iU†x ,i

For example: in the discrete Gauss constraint we now have
∑

i

1
(a0ai )2 Pa

(
Ux+0,iU†x ,i + Ux+0,−iU†x ,−i

)
= 0,

which relates the spatial gauge links of one spatial layer of the
lattice (a “time slice”) to the next time slice.
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Numerical time evolution

Procedure to perform a numerical time evolution:

Specify initial data in two consecutive “time slices”:
Ux ,i ∀x ∈ Λ with x0 = t0 and x0 = t0 + a0

1. Compute Pa(Ux ,0,i ) from EOM

Pa (Ux ,i ,0) =
∑

j

(
a0

aj

)2

Pa (Ux ,i ,j + Ux ,i ,−j)− Pa (Ux ,i ,−0)

2. Compute plaquette Ux ,i ,0 from Pa (Ux ,i ,0)
3. Compute Ux+0,i from Ux ,i ,0 using

Ux+0,i = Ux ,0,iUx ,i

4. Repeat with step 1 until final time t1
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Numerical time evolution

Step 2: Compute plaquette Ux ,i ,0 from Pa (Ux ,i ,0)

The EOM provide N2
c − 1 real numbers:

Pa (Ux ,i ,0) ∈ R for a ∈ {1, 2, . . . ,N2
c − 1}

⇒ Enough information to reconstruct the plaquette Ux ,i ,0 because
every element in SU(Nc) is determined by N2

c − 1 real parameters
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Numerical time evolution

Step 2: Compute plaquette Ux ,i ,0 from Pa (Ux ,i ,0)

Example: SU(2) lattice gauge theory

I Use S3-parametrization: Every element U ∈ SU(2) can be
written as a complex C2×2 matrix

U = u01 + i
∑

a
σaua,

with four real-valued parameters u0, u1, u2, u3 which satisfy

1 = u2
0 + u2

1 + u2
2 + u2

3

and Pauli matrices σa.
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Numerical time evolution

Step 2: Compute plaquette Ux ,i ,0 from Pa (Ux ,i ,0)

Recall: Pa(U) ≡ 2 Im tr [taU]

Using U = u01 + i
∑

a σ
aua and ta = σa/2 we find

Pa(U) = 2 Im tr
[
ta
(

u01 + i
∑

b
σbub

)]
= 2ua

Need to compute u0 from constraint 1 = u2
0 + u2

1 + u2
2 + u2

3 .

For sufficiently small time step a0, the plaquette Ux ,0,i is “close” to
the unit matrix 1 and the solution for u0 is given by

u0 =
√

1−
(
u2

1 + u2
2 + u2

3
)
.



100

Numerical time evolution

Step 2: Compute plaquette Ux ,i ,0 from Pa (Ux ,i ,0)

For SU(2), if a0 is sufficiently small then we can reconstruct Ux ,0,i
via

Ux ,0,i =
√

1− 1
4
∑

a
(Pa(Ux ,0,i ))2 1

+ i
2
∑

a
Pa(Ux ,0,i )σa,

where Pa(Ux ,0,i ) is given by the discrete EOM.
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Numerical time evolution

Step 2: Compute plaquette Ux ,i ,0 from Pa (Ux ,i ,0)

For SU(Nc): I’m not aware of any general, analytical solution.

Numerical approach: fixed point iteration

Given Pa(U), start with initial guess

U(0) = exp
(

i
∑

a
taPa(U)

)

Update guess according to

U(k+1) = exp
(

i
∑

a
taδa

(k+1)

)
U(k), δa

(k+1) = Pa(U)− Pa(U(k))

until some convergence criterion is met.
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Numerical time evolution

Step 3: Compute Ux+0,i from Ux ,i ,0

This is simple due to temporal gauge Ux ,0 = 1.

Plaquette in temporal gauge:

Ux ,0,i = Ux ,0Ux+0,iU†x+i ,0U†x ,i = Ux+0,iU†x ,i

We can solve for the unknown link in the next “time slice”

Ux+0,i = Ux ,0,iUx ,i
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Numerical time evolution

Specify initial data in two consecutive “time slices”:
Ux ,i ∀x ∈ Λ with x0 = t0 and x0 = t0 + a0 at initial time t0.

1. Compute Pa(Ux ,0,i ) from EOM

Pa (Ux ,i ,0) =
∑

j

(
a0

aj

)2

Pa (Ux ,i ,j + Ux ,i ,−j)− Pa (Ux ,i ,−0)

2. Compute plaquette Ux ,i ,0 from Pa (Ux ,i ,0)
3. Compute Ux+0,i from Ux ,i ,0 using

Ux+0,i = Ux ,0,iUx ,i

4. Repeat with step 1 until final time t1
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A note on stability

Stability for finite difference schemes: Von Neumann stability

I “Are plane wave solutions stable?”
I Works for finite difference discretizations of linear PDEs
I Yang-Mills eqs. become linear for Abelian limit, small

amplitudes, small coupling g , . . .
I Von Neumann stability analysis of linearized discrete EOM

yields ∑
i

(
a0/ai

)2
≤ 1

However, numerical time evolution also becomes unstable for large
amplitudes.
I A. Ipp, DM, “Implicit schemes for real-time lattice gauge

theory”, [arXiv:1804.01995 [hep-lat]]
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Lattice gauge theory: summary

I Using gauge links Ux ,µ instead of gauge fields Ax ,µ we can
formulate the Wilson action S[U]: a lattice gauge invariant
discretization of the Yang-Mills action

I Using constrained variation we can derive the discretized
equations of motion and the Gauss constraint

I Lattice gauge invariance guarantees the conservation of the
Gauss constraint

I Temporal gauge (which is realizable on the lattice) allows us
to perform a numerical time evolution from initial data
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