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Kurzfassung

Der erste Teil dieser Arbeit behandelt Punkt- und Kontinuumsmechanik mit den Mitteln,
welche die Differentialgeometrie bereitstellt. Der Schwerpunkt dieser Dissertation liegt
vor allem in der Interpretation bekannter Konzepte der Mechanik mithilfe geometrischer
Methoden, und deren Verallgemeinerung basierend auf den Rsultaten, welche aus dieser
geometrischen Sichtweise herriihren. Ausgangspunkt der Utersuchungen bildet die Ana-
lyse der Newtonschen Gleichungen fir einen Massenpunkt, de sich in einem Inertial-
system bewegt. Es stellt sich heraus, dass diesen wohlbekaten Relationen sehr tief-
greifende geometrische Strukturen zugrunde liegen, was sth vor allem bei der De nition
der Beschleunigung eines Masseteilchens zeigt, wenn anderals Euklidische Koordinaten
gewéahlt werden. Fur die geometrische Darstellung der Newtanschen Gleichungen wird
zur Beschreibung des Massepunktes eine Kon gurationsmanigfaltigkeit betrachtet und
alle weiteren wesentlichen Groéfien wie zum Beispiel Energie Geschwindigkeit, Impuls
und Beschleunigung werden durch geeignete Bundelstruktuen sowie spezielle Ableitungs-
operatoren, die sich durch die Wahl von bestimmen Zusammenl@ngen (Konnexionen)
auf diesen Bundeln ergeben, dargestellt. Als wesentlichesntrinsisches Objekt erlangt die
Metrik auf der Kon gurationsmannigfaltigkeit jenen ausge zeichneten Stellenwert, als dass
sich alle weiteren Konstrukte durch sie zwangslau g ergeben.

Die Verallgemeinerung auf den Fall beschleunigter Bezugsgsteme gelingt, indem man
die Kon gurationsmannigfaltigkeit durch ein Blindel erset zt, wobei nun der wesentliche
Unterschied darin besteht, dass die Zeit nun kein Kurvenpaameter sondern eine Koor-
dinate ist. Die Beschleunigung des Koordinatensystems im &fhaltnis zu einem Iner-
tialsystem kann nun geometrisch wieder durch einen Zusammahang dargestellt wer-
den, welcher zusatzlich zur Metrik, die jetzt auch explizit zeitabh&ngig sein kann, eine
wesentliche Grol3e zur intrinsischen Beschreibung ist. Wekrs wird gezeigt, dass die La-
grange und die Hamiltonsche Betrachtungsweise, welche in @r Regelungstheorie eine
herausragende Rolle spielen, auch auf den Fall von Nichtingialsystemen Ubertragen wer-
den kann.

Ein weiterer essentieller Punkt dieser Arbeit ist die Analyse der Bewegung und De-
formation eines Kontinuums aufbauend auf den Erkenntnissen der Punktmechanik. Hier
spielen die Eulersche sowie die Lagrange Betrachtungswegseine ausgezeichnete Rolle.
Die Eulersche Betrachtung folgt unmittelbar aus der Punktmechanik, indem man anstatt
von Vektoren und einer Punktmasse nun Massedichten und veldrwertige Formen be-
trachtet. Ausgehend von dieser Formulierung folgt die Lagrange Beschreibung indem man
geometrische Objekte geeignet bezlglich einer Referenzko guration beschreibt.

Der zweite Teil dieser Dissertation beschaftigt sich mit de& geometrischen Analyse von
zeitvarianten Hamiltonschen Systemen, wobei wieder die kardinatenfreie Darstellung
eine wesentliche Rolle spielt. Diese Systeme treten in der Bgelungstechnik beispiels-
weise auf, wenn man das Fehlersystem einer Trajektorienfajeregelung in Hamiltonscher
Schreibweise formulieren kann.



Abstract

The rst part of this thesis discusses point and continuum mechanics using differential
geometric methods. Special emphasis is placed on the intergetation of well known results
using the geometric machinery and their generalization from a geometric point of view.
The point of origin of the investigations are the well known e quations from Newton de-
scribing how a mass point is moving in an inertial system. These well known equations
possess a deep geometric structure, which is easily seen, vem the de nition of the accel-
eration of a mass point is given in non Euclidean coordinates To describe the evolution of
the mass point a con guration manifold is chosen and all other essential quantities such as
the velocity, the momentum, the acceleration, and the energy are introduced with respect
to adequate bundles as well as with respect to differential goerators which stem from the
choice of special connections. The main intrinsic object onthe con guration manifold is
the metric since all other objects essential for a coordinat free description depend on the
metric, which is de ned by the choice of a coordinate system.

The generalization to the case of accelerated coordinate sstems can be performed by
the replacement of the con guration manifold by a bundle, wh ere the essential difference
is given by the fact, that the time becomes a coordinate in cortrast to the case where the
time is only a curve parameter. The acceleration of the coordnate system with respect to
an inertial system can be accomplished in this geometric fomulation by a connection as
well, which beside the metric that might be time dependent in this setting is now the key
ingredient in this intrinsic description. Furthermore, it will be shown that the Lagrangian
and the Hamiltonian point of view, which are also important ¢ oncepts in control theory,
can be formulated with respect to non inertial systems.

An essential demand of this thesis is the analysis of the motin and the deformation
of a continuum based on the constructions gained when analyng point mechanics. In
this context the Eulerian and the Lagrangian formulation are important to mention. The
Eulerian picture follows as a straightforward generalization from the case of particle me-
chanics, if instead of vectors and a point mass, now mass denties and vector valued
forms are considered. Based on this formulation the Lagrangan picture is obtained, by
considering geometric objects with respect to a so-called eference con guration.

The second part of this dissertation is focused on the geometic analysis of time variant
Hamiltonian systems, where again the coordinate free desdption plays a key role. These
systems arise in the context of control theory for example when the error system with
respect to a certain trajectory can be expressed as a Hamiltman system.
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Chapter

Introduction

Modeling of physical systems has a long tradition and the man tools are non relativistic
theory, relativistic theory, and quantum theory. These concepts were developed driven by
the human curiosity to analyze nature. Even more important is the fact that we do not only
want to comprehend the physical systems but also want to manpulate them and this often
leads to a control engineering problem. In both disciplines, modeling and control, geomet-
ric methods have become very popular during the years. The rason is obvious, since the
desire of concepts that allow a general coordinate invariarce can be satis ed using geome-
try in a comfortable way. In this context it is important to me ntion that modeling which is
based on physical considerations often leads to mathematial representations, which pos-
sess several structural properties that are not dependent o the chosen coordinate system
and therefore termed 'covariant’. Covariance is understod in the sense of Einstein, such
that the laws of physics should be intrinsic with respect to the change of coordinates of
space-time. However, since the non relativistic case is ouobjective we will consider only
special morphisms of the space-time which preserve the beimng over the time.

The main part of this thesis is devoted to an important subclass of physical systems,
namely non relativistic mechanics. Mechanics is of course @erm of wide comprehension
and lot of different theories and concepts could t in this ar ea. In this work we want to
consider very elementary concepts using a modern mathematal language. More precisely,
we want to focus on the problem to give a covariant description of particle mechanics and
based on these investigations to generalize the concepts t@a continuum, where the geo-
metric structures that already arise analyzing a mass parttle should also be exploited as
much as possible for the case of continuum mechanics. With rgpect to classical mechanics
let us quote for example the books [Abraham and Marsden, 1978 Arnold, 1989] and con-
cerning continuum mechanics and eld theories [Marsden and Hughes, 1994, Prastaro,
1996, Truesdell and Noll, 3rd ed. 2004] are noteworthy beside many others. Of course
it has to be mentioned that the literature available seems exhaustless and here only some
selected works have been cited. With respect to the demand tat we want to use modern
mathematical tools we refer to [Giachetta et al., 1997, Saunders, 1989] where most of
the geometric concepts used in this thesis can be found. The gal of this work to bring
together concepts of mechanics and the language of modern dferential geometry is of
course treated in the literature as well, for example in [Man giarotti and Sardanashvily,
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1998, Giachetta et al., 1997, Modugno et al., 2005, Jadczyk & al., 1998] but our approach
differs in some constructions, especially in the choice of sme connections and the rigorous
use of the vertical machinery, but of course the equations fa covariant particle mechanics
coincide. The extension to continuum mechanics the way it ispresented here is based on
[Schlacher et al., 2004], which treats continuum mechanics in an inertial system with a
curved space-time and this thesis generalizes the governig equations for a continuum in
the Eulerian and the Lagrangian description such that they ae independent of a splitting
of space and time.

This geometric analysis is of course not restricted to mechaics and can be generalized
to another important subclass of physical systems, namely lmiltonian systems. These
systems are well known in the literature, see for instance [Olver, 1986] and their extension
for control purposes [Kugi, 2001, van der Schaft, 2000] and references therein. We will
analyze time variant Hamiltonian control systems again in a covariant fashion and show
how this formulation can be useful for a geometric interpret ation of so-called error systems
when tracking control is the demand.

In chapter 2 the relevant mathematical tools are summarized brie y, where most of
those and detailed discussions and proofs can be found in [Gachetta et al., 1997, Saun-
ders, 1989]. Then point mechanics is in the focus of chapter 3 We start with a rather
general discussion of well known relations that are given in a geometric language needed
for a generalization to a pure covariant description. Also the Lagrangian and the Hamil-
tonian approach are considered and compared to the relatiors obtained using differential
operators, which are constructed with respect to several conections. Chapter 4 is devoted
to the discussion of continuum mechanics where most of the tgics that are considered
are based on the results of chapter 3. The balance equationspnamely, conservation of
mass and energy, and balance of linear momentum are treatedn the Eulerian and the
Lagrangian description and furthermore a variational approach is proposed. Finally, chap-
ter 5 is devoted to the discussion of an intrinsic description of time variant Hamiltonian
control systems.

It is worth mentioning at this stage that during this thesis m ost of the proofs and
coordinate calculations are omitted to increase the readallity. Nevertheless, all these
details can be found in a rather formal way in the Appendix and the reader is advised
to consult this part of the thesis while reading the main chapters, since the usefulness of
the geometric machinery becomes more clearly when examiniig the equations in detail.
At rst sight the equations also in the time variant setting | ook very familiar, but this is a
consequence of the vertical machinery as a closer look on thalerivation of the relations
will show.



Chapter 2

Geometric Preliminaries

This chapter summarizes the relevant topics of standard diferential geometric concepts,
which will be needed in the sequel. Basic constructions of bered manifolds, tangent and
cotangent bundles will be assumed to be known. The notation wed in the following is
similar to [Giachetta et al., 1997] and [Saunders, 1989].

2.1 Exact Sequences

The splitting of bundles, which is one of the key geometric tools in the following, can be
expressed using exact sequences, therefore we want to redakome basic facts here. We
will only de ne the sequences for vector spaces since the gerralization for vector bundles
over the same base is straightforward. Given linear spacet/* and the linear mapsf X the
sequence of spaces

Ukl fk l_ Uk fk_ Uk+l fk+1

is said to be a complex if the composition of any two neighboring arrows is the zero map,
which meansf* fk 1=0:By de nition we have im (f* %) ker(f ¥): A complex is said to
be exact (or acyclic) in degreek, if im (f ¥ 1) = ker(f ¥): If a complex is exact in all degrees,
it is called an exact sequence.

Example 2.1 The sequence

f g
0 - U SV - W - 0

is a complex, ifg f =0: Exactness alJ means thatf is injective and exactness a¥ means
that g is surjective. In addition, ifimf = ker g then the sequence is called a short exact
sequence. If there is another map: W ! V suchthatg h=id ismetthenV = U W
and the sequence splits.
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2.2 Vertical Bundles

We consider the bundle : E ! X with local coordinates x' for X and coordinates(x';y )
for E. The tangent bundle ¢ : T(E) ' E is equipped with the corresponding induced
coordinates (x';y ;x';y ) and the cotangentbundle :T (E)!E possesses the induced
coordinates(x';y ;X;;y ) with respect to the holonomic bases(@ @) and (dx'; dy ): There
is an important subbundle of the tangent bundle T (E) ! E which is called the vertical
tangent bundle ¢ : V(E) ' E which meets V(E) = ker( ); where  denotes the tan-
gent map. V(E) is provided with the induced coordinates (x';y ;y ) with respect to the
holonomic bre base @: Elements of V(E) are vectors which are tangent to the bres of
EIX .

The vertical cotangent bundle ¢ :V (E) ! E isthe bundle dualto ¢ :V(E)!E but
fails to be a subbundle of T (E) ' E as can be veri ed easily by the transition functions.

Remark 2.2 Given a vector bundle : E ! X we haveV(E) E ,E by a natural isomor-
phism. To see this let us consider a change of coordinatess ' (x)y ; x{ = {(x); since
E ! X is avector bundle. The transition functions fo¥(E) read as

xt = {(x)
y ="' (xy
y =" (v

becaus = 0 and the isomorphism is readily observed by comparing the tigition functions
ofy andy :

2.3 First-order Jet Bundles

Given the bundle :E ! X again with local coordinates x' for X and coordinates (x';y )
for E we are interested in the following in equivalence classes ofsectionss and s of :
We de ne two sections s and s to be 1-equivalentat x 2 X if in some adapted coordinate
system

s(x)=s(x); @ j,= @] :
This means that two sections are identi ed by their values and their values of the rst
partial derivatives at the point x 2 X . The equivalence class containings is called the
1-jet and is denotedj 1(s): The set of all the 1-jetsof local sections of E ! X has a natural

structure of a differentiable manifold which is denoted by J (E): Further bundles can be
constructed, which are given by the following surjective submersions

Lo aYE) X
s - JYB'E
For an extended discussion and especially for the case wher& ! X is only a bred

manifold we refer to [Giachetta et al., 1997, Saunders, 1989] and omit the technical details
here.
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Based on the bundle coordinates(x’ ;Y ) one can construct the adapted coordinates for
the manifold J *(E) which follow to (x';y ;y, ) where the coordinatesy, are called the
derivative coordinates

yi (ix(s) = (@s )i, :
They possess the transition functions

yy = @ +@ vy @ !
@ +@ y @ (2.1)

with respect to the bundle morphismy ="' (y;x);xt= {(x):

From the transformation law (2.1) it is seen that the bundle J *(E) ! E is an af ne one,
which is modeled over the vector bundle T (X) g V(E)!E . There exist two important
canonical morphisms which allow us to identify jets as tangent-valued forms. In fact, there
is a unique bundle monomorphism!

JHE)!T (X) T (E)
= dx' (@+y @ =dx d

and the complementary monomorphism

JYE)!T (E) V (B
= dy yd& @= @

where d; and  are called the total derivative and contact form, respectively, see [Gia-
chetta et al., 1997]. The morphisms and allow a canonical horizontal splitting of

s T(E) = IJYB) eT(B)= (T(X)) ;:mV(E)
o T(E) = 3IYB) eT(B=TX) ;g (V(B)

which in coordinates reads as

X@+y @
xjdx' +y dy

X(@+y @+ y Xy @ (2.2)
(xi+yy)dx'+y dy ydx : (2.3)

The importance of these constructions lies in the fact thatV(E) has no distinguished com-
plement in T (E) and that H (E) which is the annihilator of V(E) has no distinguished
complement in T (E) without the speci cation of a connection. However, the pull backs
() T(E)of T(E)and( &) T (E)of T (E) possess this splitting due to the tangent-valued
forms and :

Yin the sequel J 1(E) g T(E) which is equivalent to § T(E) is sometimes simply written as T (E)
when the pull back is clear form the context. This convention is used for pull back bundles in general.
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2.4 Connections

A connection on the bundle :E ! X is the choice of a splitting of the exact sequence

0!V (B)]T (E) E xT(X)! O: (2.4)
Therefore a connection is a map
E xT(X) ! T (E)
Oy sx) 7 (xBy X X)

where the local functions , 2 C! (E) are called the components of the connection. This
map can also be represented as

=dx' (@+ ;@)

and the image of E x T (X) under de nes the horizontal subbundle H(E) ' E which
splits T(E) asT(E) = V(E) H (E). The dual construction involves the splitting of the
sequence

O'E xT X)!T (E) V(BE)! O
and in this case the map is represented as

= dy dX @
It follows that we have
X@+y@ = xX(@+ @+(y x ;)@ (2.5)
xidx' +y dy = (xi+y ;)dx +y dy - dx’ (2.6)

and this suggests (compare (2.2) with (2.5) and (2.3) with (2 .6)) that a connection can
be de ned as a section of the af ne jet bundle J *(E) ' E and consequently

E ! J YB
(xhy) 70 (xhy o)
iSs met.

Remark 2.3 The transition functions for =d x' (@+ ; @) when the bundle morphism
y ="' (y;x); xt = {(x) is applied follow by elementary computations. To see this les
compute

X' = @%
Yy = @ X+@ y
and therefore we obtain

ax 1 @ dx

@! @e+t@ @
@ ! @ @
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as well as i
@ @@e+r@ o+ @ @
This can be written as
o @+@ (@ + @ )@ =dx @+ @

and we immediately obtain the transition functions for the @nnection coef cients

=@ @ + @) (2.7)

where it is readily observed that this corresponds to the trsition functions for the 1-jet
variables. This is no coincidence but a consequence of tlee laat the af ne bundle J 1(E) !
E is modeled over the vector bundle (X) gV(E)'E .

2.4.1 Covariant Differential and Covariant Derivative

Given a connection there exists a rst order differential op erator which is called covariant
differential relative to the connection. Since a connection is a section of the af ne bundle
JYE) ! E , it de nes the morphism

r 0 J l(E)!ET (X) V (E)
roo=(y X @: (2.8)
Let us consider a sections : X | E then we obtain the covariant derivative of s as
r(s) : XI!T (X) V (B
r(s = (@& ; 9dx @: (2.9)

Given a sectionv : X I'T (X), v = v/(x)@we can de ne the covariant derivative of the
sections: X ' E along v which reads as

ver 9=V (@ | 9@:

2.4.2 Linear Connections

Let us consider a vector bundleE ! X and its dual vector bundle E ! X . The connection

is a linear connection on E ! X if it is a linear bundle morphism : E!J %E) over
X, which means that the mapy, = . (y ;x) is linear in the bre coordinates y : In
coordinates the connection coef cients read

Yi = i = Y izcl(x):

From the canonical maphi : E xE ! C ' (X) given byy y and its lift to the rst jet
jithi) 1 JYE) (IYE)!'T (X) Rwith x; = (y )iy +y (y )i we derive the dual
connection of demandingj(h; i)=0:From

(iy+y Ddx'= yy+yy ; d&x= ; + ;| yydx
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it follows that

has to be met which is also illustrated in the following commu tative diagram

JY(E) le(E)jﬁ)T (X) R
6 6
0; Id
E xE _m X R

where X R corresponds toCt (X).

2.4.3 Composite Connections

Let us consider the composite bundle structureE ! Z ! X with adapted coordinates
(x';z%y ) as well as '
=dx @+ '@
and _
=d X (@+ @+dz"° (@+ ,@):
The connection splits T (Z) with respect to the bundle Z ! X and splits T (E) with
respect to the bundleE ! Z

Remark 2.4 To simplify the notation with respect to composite bundlesendenote the jet
bundle with respect tcE ! X by J 1(E) and the jet bundle with respecttdc ! Z by J }(E).

A typical element of T(X) is written as x' @ and in the following we consider the

horizontal lift of x' @with respect to : This gives
xX@ = x @+ '@

X @ f@c = X (@ @+X @+ ,@)

= x @ @+ ;+ ?, @

and therefore we observe that there is a connection that splis E ! X which produces the
same result and is called the composite connection

=dx @+ '@+ +!,@

since _ _
x'@ = x'@ ¢
The covariant differential with respectto  is a map
r - JYE)!IT (X)) V (B
ro = dx P @+ i Py @ (2.10)
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and it is worth mentioning that due to the composite structure E ! Z !X the ver-
tical bundle V(E) ! X possesses the bre base(@; @) and the adapted coordinates
(x';z%y ;z°vy ): Let us consider the splitting of an element of V(E) with respect to the
connection

’@+y @=2°(@+ ,@+ vy 2, @:
If we apply this splitting to the vector part of (2:10), we obtain the vertical covariant
differential relative to the connection
o=, i e 7 o, dX @
=y, i Wz dx' @ (2.11)

2.5 Brackets and Differentials

Let us consider a manifold M together with the space of all vector valued forms on M
which is denoted by ~(M ) T (M ). The Frolicher Nijenhuis bracket (N bracket) is a
map

[len :A"(M)T (M)A S(M)T (M)A T5(M)T (M)

f M~ (M), :MI*» S(M),u;v:M!T (M) thenthe N bracket reads as
[ u Vey = 7~ uv+( ~uC)) v o(v()" )

+( 1)'(d ~uc) v+( 1) (vce ~d)

where u(v); u( ) denote the Lie derivative of a eld and a form, respectively. Given a
vector valued form #: M1~ (M) T (M) then the Nijenhuis differential is de ned to
be

dye : ! dy =[# ey

for M (M) T (M). Letusinvestigate againthe bundle :E !X andwe assume
that a connection :E !J *(E) exists, which is a tensor

=dx (@+ ;@)

and therefore an object *1(X) P (E), where P(E) denotes that the eld @+ ;, @ is
projectable. The F-N covariant differential associated wth is the Nijenhuis differential

d :A(X) P (B! "™ (X) V (B

which plays a crucial role in continuum mechanics as will be s2en. The coordinate expres-
sionford ( )with 22"(X) P (E)reads as

d ( ):( k@ !(1:::ir @ i !(1:::ir+@ il:::ir+ i@ gy @ i il:::ir)dxi/\dxil/\:::/\dxir @:
Example 2.5 Let us consider the form 2~ "(X) V (E) which in coordinates reads

dx'tA A dxt @

ip:oiy
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such that ; .; 2 C' (X) and the linear connection
=dx' @+ ;y@
Then the F-N covariant differential associated with of the vector valued form is given as
d()=(@ i, 1 )X AdXTAAdXT @

since the coef cients !(1:::ir are all zero because in this example we consider a verticalueal
form.

2.6 Some Topics of Riemannian Geometry

Given an oriented manifold M with coordinates x' we consider a non-degenerate metric
g: T(M)!T (M) that is represented by the tensor

g=gjdx dx
with g; = g; and the inverse of the metricisamapgd:T (M) ! T (M) which is given as
0=9@ @:

Remark 2.6 The tensorgy and g can be interpreted as sectiorgg: M!'T (M) _T (M)
andg:M!'T (M) _T (M), where_ denotes the symmetric tensor product.

The associated volume form is given as

q___
vol = jdet(g;)jdx*~ :::n dx"

The components of the Levi-Civita connection, associated wh g obey the relations

= o @3+ @y @) (2.12)
K 1 I
k = PW@ jdet(g; )i (2.13)

and it is worth mentioning that the Levi-Civita connection i s a linear connection that splits
T (T (M )) with respect to the bundle T(M )!'M . The details will be discussed in the
forthcoming sections with regard to mechanics.

Remark 2.7 Itis important to stress out that we use the sign conventionhich is compatible
to [Giachetta et al., 1997], since in the physicist literatue often a different one is used.

The covariant derivative of the metric g with respect to the Levi-Civita connection reads
as

r(@=(@u+ G+ [ogm)dx @ @; (2.14)
where V(T (M) is equipped with the induced base(@):
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2.7 Integration on Manifolds

Furthermore integration on manifolds will be important in t he sequel, but we only reca-
pitulate the theorem of Stokes here and refer for all further constructions and details to
[Abraham et al., 1988, Boothby, 1986].

Theorem 2.8 LetM be an oriented manifold of dimensiop with coherently oriented bound-
ary @1 and! aform of degreg 1 of compact support. Then we have
Z Z
d = ")
M @/

where denotes the inclusion: @1 ' M



Chapter

Point Mechanics

Classical mechanics is one of the best analyzed scienti ¢ diciplines since centuries and
most of the achievements made so far allow a wonderful geometic interpretation. There-
fore, studying mechanics shows preeminently a fusion of gemetry and physics. The in-
tention of this chapter is to analyze Newton's famous secondlaw. This seems surprising
on rst sight since this result is well known for a very long ti me, but the geometric ideas
behind the equations are sophisticated already when other han Euclidean coordinates are
used.

A standard construction to describe the evolution of a mass prticle on a con guration
manifold is the use of a covariant derivative with respect to the Levi-Civita connection. In
the literature this is often interpreted as a map that assigns to two tangent vectors on the
con guration manifold a third one. Of course, this is correc t, but there is so much more
geometry involved in this construction which will be essential, if the generalization to non
inertial systems is the demand.

In this approach, close attention is paid to the splitting of several tangent bundles
which can be accomplished by a connection and this is the key bservation for a geometric
analysis of mechanics.

In section 3.1 the equations describing the motion of a mass pint on a con gura-
tion manifold regarded as an inertial system are recapitulated. This is accomplished in a
rather geometric way, already introducing concepts which allow a generalization to the
case where the chosen coordinate system does not qualify asminertial system. This
means for example that the motion of the mass point is observel from an accelerated co-
ordinate system with respect to the inertial one. Section 32 presents point mechanics in
a pure covariant fashion, such that the equations are formuhted with respect to covariant
derivatives and they will remain correct even if a time variant coordinate change is con-
sidered, which corresponds to the change of the observer. Aan example we want to study
the motion of a mass particle observed from a moving and a rotding coordinate system
with respect to an Euclidean one. It is well known that in this case ctitious forces such
as the Coriolis acceleration or the Centrifugal acceleraton arise and it is our goal to give
an interpretation of this classical example in terms of jet theory and connections. This
intrinsic approach is de nitely not limited to the case of ri gid transformations, since any
superposed motion with respect to an inertial coordinate system can be described by a

15
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connection and thus no restrictions arise.

Since the Lagrangian and the Hamiltonian description are wel known concepts in me-
chanics, these topics are also presented compatible with th intrinsic formulations. Espe-
cially the Hamiltonian formulation allows some interestin g new aspects. A connection will
be presented that can be used to split the Hamiltonian vector eld, which gives insights
with respect to the energy balance of the system in the time vaiant case as well, see also
[Schoberl and Schlacher, 2006a)].

3.1 Classical Formulation

This part of the thesis is introductory and reviews some wellknown results of classical non-
relativistic particle mechanics, where classical means tlat it is a kind of standard in the
literature, as for example in [Abraham and Marsden, 1978]. However, we will reformulate
these results using jet theory and connections to prepare fo a discussion of the analogies
and the differences to the case where the splitting into time and space is not xed a priori.

3.1.1 Con guration Manifold, Motion, Velocity and Momentu m

Let us consider the con guration manifold M , where we use coordinatesq ; with =
1:::dim(M ): It is important to stress out the fact that the time in this setting is used
as a curve parameter on the manifold M . Consequently, the time which is labeled t°
for reasons that become obvious later, is not a coordinate ad therefore changes of co-
ordinates of the form q = ' (q) are considered only, which do not involve t° From
standard constructions we are able to introduce the tangentbundle  : T(M)!M
with coordinates (g ;q ) for T(M ) and the cotangent bundle ,, : T (M)!M with
coordinates (g ;g ) for T (M ). A motion of a mass particle m 2 R* can be described
by a curveq = s (t° where t° is clearly used as the curve parameter. The velocity of a
mass point is a tangent vector on the manifold M or equivalent a section of the bundle
T(M)!M andthe momentum can be introduced as the dual object of the veocity with
respect to a non-degenerate Riemannian metric onM . Consequently the metric is a map
g: T(M)!'T (M) represented by the tensor

g=g dg dq

with g = g and the inverse of the metricisamapg: T (M)!T (M) which is given
as

0=9 @ @

as introduced in section 2.6.

Remark 3.1 In an inertial system with Euclidean coordinates we have by agition a trivial
metricg = , Where denotes the Kronecker symbol.

Remark 3.2 The transition rules for the metric follow from

g= (q); dg =@ dgq; dg =@" dq
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as
g — g @/\ @/\
The momentum is a section of the bundleT (M )! M and can be expressed as
p=m(vcg) ; p =mg Vv :

Remark 3.3 To be more precise we notice that there is an object duala M!'T (M),
with respect to the metric which reads ag = vcg: The momentum is then introduced by an
additionalmap T (M)!T (M) such thatp= mv :

The velocity of a mass particle can be interpreted as a curven the tangent bundle
T(M)with g = s (t%;9g s= (v s)(t%: Consequently, the momentum is a curve
in the cotangent bundle T (M) with g = s (t°;g s=(p 9)(t%=m(@ s)(v
s)(t%): It is worth mentioning that the change of the velocity is tangent to T (M ). There-
fore we introduce the bundle ) : T(T(M))!T (M) with coordinates (g ;q ;9 ;9 )
for T(T(M)). To compute the change of the momentum we need the bundle 1 (v, :
T(T (M))!'T (M) with coordinates (g ;g ;q ;q) for T(T (M)). A typical element
of T(T (M )) is then written in coordinates as

=qg@+9q@
and in the same spirit we have for an element of T(T (M )) the coordinate expression
=g @+9@;

where we used the holonomic bases @;@ ; @;@ , respectively. To compute the

change ofv: M!T (M) a connection that splits T(M ) ! M is necessary. Such a con-
nection is given by the tensor

=d g @+ @ ; 2CH (T(M))

and the dual construction allows to determine the change ofp: M!T (M) and thus a
connectiononT (M )!M which is given as

=dq @+ @ ; 2CH (T (M)

is needed. Roughly speaking these tensors are nothing elséhtatn a speci cation of a hori-
zontal direction of T (T (M )) at any pointon T (M ) or a horizontal direction of T (T (M ))
at any pointon T (M ).

Remark 3.4 The transition functions for follow from equation (2.7) and read as

=@ @ g+ @ (3.1)
whereqg = (9);q¢ =@ d =" (q;q) and the transition functions for read as
=@" @"q@ + @ (3.2)
whereq = (q);qa=@" a =" (9:Q):
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Remark 3.5 For a linear connection we obtain from the relation (3.1)

@"@ @ ¢+ @ @ @ g
= a
with
N N N
= @ @ @ @ @
where we used equation (A.2) from the Appendix and except foe sign this corresponds to
[Marsden and Hughes, 1994]. From the equation (3.2) we have

=@"@e ¢+e@" @ @ q
= a
with
N N N
= @ @ @ +@ @
From a mathematical point of view is a splitting of the exact sequence (2.4) which in
this case reads as

oV (TM)IT (TM)) TM) ,T(M)! 0
and for we have
oV (TM)N!IT (TM) TM) ,TM)! oO:
Remark 3.6 Let us apply remark 2.2 to this special situation and we immeately have
va@am) T M) ,TM):

In coordinates this can be shown easily since for an elemera V (T (M )) the transformation
rules follow to

g= (@); =@ a; ¢=@ g
becausey = 0 and the transformation rules of the two latter ones coincidéA similar argu-

ment holds for
VT M) T M) 4T (M):

3.1.2 Connection Coef cients

It remains to choose the coef cients  and . AconnectiononT(M ) ! M that splits
T(T(M)) can be represented as the map

S TM)Y I YT

according to section 2.4. Following [Schlacher et al., 2004] we use the metric which is a
mapg: T(M)!T (M) to obtain the coef cients and . The extension of the map
gtoits rstjet

ifg): I N(TM) I (T (M)
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will turn out to be important for the following. The demand th at j(g) is a linear map
leads to the desired connection as will be shown. The mapj 1(g) is given in coordinates
as

(a) =g (a) *(@g )a
which is af ne.

Remark 3.7 The coordinates of the jet manifold (T (M )) are denoted q ;q ;(g ) and
the jet manifoldJ * (T (M )) possesses the coordinateg ;q ; (g )

To make the mapj(g) linear we choose a linear connection and its dual , such
that

(@) =g (@) )

is met. Rewriting the expressions gives

g (a) )+ = g (q) (@9 )a
g a+ d = (@ )q
g a gqg = (@ )gq
and
(@g-)= g~ g - (3.3)

Remark 3.8 The relation (3.3) can be also interpreted differently, soe it corresponds to
r (g)=0:

From the sum of the relations

(@-)+g- +g . =0
@) g - g . =0
(@g)+g - +0o =0
which is
(@g-)+ g- (@ )+(@g )+ ¢ =0
we nally obtain
2 = 0 (@9 +@ @g ): (3.4)

These are the Christoffel symbols of the second kind with repect to the metric g and this
coincides with the relation (2:12):
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3.1.3 Covariant Derivatives

The covariant differential, see equation (2.8), with respect to the linear connection

=d q @+ 1@ ,; 2C'M)
Is a map

ro 2 JYaTM)!'T (M) V (T(M))

r : a g dg @ :

Let us plug in a sectionv: M!T (M);v=9g @ = v (9@ and a contraction with the
eld v @ gives
ver (V)=v @v vV @;

where the isomorphismV(T(M)) T (M) ,, T(M) is crucial.

Remark 3.9 It is worth mentioning that alternatively also the notationr (j *(v)) is appro-
priate, however, for simplicity we will use the one presext@above.

Since in this case the time is the curve parameter we cansety = s (t°) andv s =
@s (1% and then we have

ver (V) s = @V 9) S @ @ @
= @s s @ @ @

which is a standard result in point mechanics. The dual constuction is based on the linear
connection

=dq @+ q@

and again the covariant differential with respectto s

r YT MYIT (M) V(T (M)
r o (q) g dg @:
The change ofp: M!T (M );p=qgqdq = p (gdg alongthe eld v @ consequently
reads as
ver (p=v @p p dq

where the isomorphismV(T (M)) T (M) ,, T (M) isessential. This can be rewritten
as

1
ver () s= @p 9 =g pp s dg

and will be discussed in more detail in the section 3.2.
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3.1.4 Examples

Example 3.10 Let us consider an inertial system with Euclidean coordirest(q ): Then the
connection reads as = d ( @ with = 0: A change of coordinates of the form
g = (q) leads with relation (3.1) to

=@"@ g=@"@ @ ae= q
and it follows immediately from equation (A.2) that we have
—@e"e @ = @ @"

This is the standard result, see for example [Marsden and Hgg, 1994] except for the sign.
From remark 3.5 we have

@@
forthe case =0 and it is immediately observed that

is met, which is discussed in general in section 2.4.2. Thiscourse applies here, since we are
dealing with linear connections on vector bundles.

Example 3.11 With the same situation as in the previous example the metiit the inertial

system is given ag = dg dg : Then we evaluate the equation (3.4) and obtain in the
new coordinates with the metrig = @~ @"
2 = 0 (@-+@ @g)

= @@ @e@e + eee@e .00 e

= @ @( @e"@ + @"a@")

= 20 @"

This obviously coincides with the result of the foregoingaample.

3.2 Covariant Formulation

The purpose of this section is to generalize the formulas of gction 3.1 to a pure covariant
description. The key assumption of the previous section wasghat the time t° is a curve
parameter on the con guration manifold M . If we consider the time as a coordinate then
an obvious procedure will be the choice of the product manifold M B , where B possesses
the coordinate t°: This self-evident selection has a disadvantage, namely thehoice of a
product manifold implies that a splitting into the spatial a nd temporal coordinates has been
proposed implicitly. This may be reasonable from a physicalpoint of view for a concrete
problem, but from a geometric point of view such a splitting i s not preserved by arbitrary
bundle morphisms. Therefore the concept of a connection is mdispensable for a pure
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covariant formulation, which of course should produce the correct equations also when
coordinates are chosen which are not xed to the inertial system. The main observation
for this intrinsic setting will be that in place of M B , we use a bundle : Q!B
Then the splitting of time and spatial coordinates will be re presented by a connection
on Q!B which splits T (Q), see [Giachetta et al., 1997, Mangiarotti and Sardanashvily,
1998, Modugno et al., 2005]. At this point it is crucial to rem ark that due to the bundle
structure the projection on the time manifold Q! B is well de ned without a connection
whereas a projection on the bre Q! Q o requires the de nition of a horizontal direction,
which is clearly given by a connection on Q!B . In contrast to the foregoing section
the space of the velocities will beV(Q) instead of T (M ) and the space of the momentum
will be V (Q) instead of T (M ). To de ne the change of the velocity or the momentum
connections onV(Q)'Q andV (Q)!'Q will play the same role as the connections on
T(M)IM andT (M)!M did before.

3.2.1 Space-Time and Reference Frame

Let us consider the bundle : Q!B with coordinate t° for the time manifold B and for Q

we introduce coordinates (t% g ). The tangent bundle T (Q) is provided with the adapted

coordinates(t%; g ;t% g ) and the dual vector bundle, namely the cotangent bundle T (Q),

possesses the coordinatet®; q ;tg; g ): From the constructions in sections 2.2 and 2.4 we
derive the vertical bundle V(Q) ! Q with the induced coordinates (t% g ;q ): To de ne the

horizontal bundle H(Q) ' Q a connection that splits T (Q) is required. In the context
with mechanics a connection onQ constitutes a reference frame, which can be interpreted
as the velocity of an observer, see [Mangiarotti and Sardanahvily, 1998, Modugno et al.,

2005], which can be stated as

=dt® (@+ @) ; ,2C'(Q): (3.5)

It follows that we have the splitting T (Q) = V(Q) H (Q) which can be visualized by the
splitting of the exact sequence

0lv (Q!T (Q Q sT(B)! O:

These constructions can easily be assigned td (Q). Here the choice of a connection gives
us the possibility to construct V (Q), which is the annihilator of H(Q), where we use the
induced coordinates (t°;q ;q ) for V (Q) and in this case the sequence

0rQ T B)IT (Q V(Q! 0

is of importance. From remark 2.3 it follows that when we apply bundle morphisms of
theformq ="' (q;t%,t°= ©(t% the transition functions for the connection coef cients
read as

= @@ + @ ): (3.6)

Remark 3.12 In an inertial system the connection reads as = dt°® @ and it follows
from equation (3.6) that this trivial connection will be preserved only, if@ = 0 is met.
This means thatg = ' (g ) and this corresponds to the fact that then the product manifb
structure is preservedl B! M  B.
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Remark 3.13 In the following we mostly do not consider time reparameteations. This
means that in the sequel® = Jt° unless indicated differently.

3.2.2 The Vertical Metric

A vertical metricisamapg : V(Q)!'V (Q), with g = g g which in coordinates is
represented by a symmetric tensor

g=g (dg odt° (dg  odt°); (3.7)
with g ; o 2C'(Q)andg = g . The inverse of the metric will be denoted § :
V (Q)!'V (Q) which is represented as

0=9 @ @:

Remark 3.14 As tensorgy and § can be interpreted as sectiorgs: Q!'V  (Q) _V (Q) and
6:Q!V (Q)_V(Q).

The metric allows us to measure the distance between two similtaneous events that lie
in the same bre Qo for a given time t°.

Example 3.15 In an inertial system with Euclidean coordinates the metriceads asg =
dg dg . A bundle morphism of the formg ="' (q ;t%),t° = 5t° leads to the relation

dg = @ dt°+ @ dqg anddt®= Jdt°. Therefore we obtairdg = @” (dg @ dt°)
and consequently the new metric reads as

g= @" @" (dg @ dt°) (dg (@ dt°)
and this is exactly a metric of the form (3.7) withg = @™ @™ and | = 8@'

3.2.3 Motion, Velocity and Momentum

A motion of a mass point is de ned by a sections: B! Q of the con guration bundle. In
order to calculate the change of the motion we use a covariantdifferential with respect to
the reference frame, see also [Mangiarotti and Sardanashwy, 1998],

r JNQ)!T (B) V (Q)
ro=dt® (g )@ (3.8)

and the covariant derivative of a section s with respect to the reference frame

r (s):B!T (B) V(Q)
r(9=dt® (@ o 9@ ° (3:9)

The velocity v is a vertical vector eld and can be interpreted as a section d the bundle
() vV@Q)!'I YQ)where }:J%Q)!'Q and follows as

v=@cr =(q 0) @ : (3.10)
If we restrict the velocity to the motion we have

v it(s)= @cr (5)=(@s o 9@:

These constructions are visualized in Figure (3.1).
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Motion s
/ V ertical V elocity Field v

Fibres of Q

Figure 3.1: The Con guration Bundle

Remark 3.16 It should be emphasized that this description of the velgcitorresponds to a
relative velocity with respect to an inertial reference frae which reads as , = 0 in the bundle

coordinates(t® = t%q ):

The dual construction is based on the momentum which is introduced as the dual object
to the velocity with respect to the metric and is given by a sedion

p:3i Q! 5 (V(Q)
as
p = m(vcg) :

To be able to derive the change of the velocity along the motin we introduce a connection
that splits To(V(Q)). Such a connection is given by

=d t° @+ ,@ +dq @+ @ ; o 2CH(V(Q)) (3.11)

where the standard holonomic base for T (V(Q)) is given by (@; @; @): The following
commutative diagram illustrates the geometric constructions presented so far, involving
the connections and

VQ) — T(VQ)=—=— V(V(Q) H (V(Q))
6
Q T(Q = H(Q) V (Q= T(Q)
(8]
B T(B)== T(B)
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The transition functions for the connection (3.11) read as
= " (@' ga+@ )
0
o= @@ a+v@ , @ ) (3.12)

where the detailed computation can be found in the Appendix A.2.1. We will study only
linear connections and so we have the relations

0= odi = .q:

To study the change of the momentum a connection onV (Q) ! Q is of importance that
splits To(V (Q)) which is given by

=dt® @+ ,@ +dg @+ @ (3.13)

with the standard holonomic base (@; @; @) for T (V (Q)): The transition functions for
the connection (3.13) read as

Q" (@"qg@ +@” )
0 @ q+@° @" @ q+@ o @ (3.14)

where the detailed computation can be found in the Appendix A.2.2. Considering a linear
connection, it is easily observed that the relations

o= o0d, = a

are met.
It is important to mentionthat and  are linear connections on dual vector bundles
and therefore they ful ll

see section 2.4.2.

3.2.4 Covariant Derivatives

The covariant derivative of a sectionw : Q 'V (Q) with respect to the linear connection
is given by

rW:iQ!T (Q) V o(V(Q) 3.15)
ro(w)=(@w oW )dt® @+ (@w w)dg @ '

where the natural isomorphism Vo(V(Q)) V (Q) ,V(Q) was used. The covariant deriv-
ative of a section! : Q !V (Q) with respect to the linear connection  reads as

ro(1):Q!IT (Q) VoV (Q)

ro()= (@ ! )dt+(@! | )dg  dq  odt® (3.16)

where the natural isomorphism Vo (V (Q)) V (Q) oV (Q) is of importance.
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The Connection Coef cients

To determine the coef cients | ; we consider the mapg: V(Q) 'V (Q) and proceed
as described in section 3.1.2 using the vertical metric The extension ofthemapq =g g
to its rst jet

i'(9): 3V 13 GV (Q)

yields the following relations
(A)o=9 (@)o*+(@y )a; (@) =9 (@) +(@ )a
which are af ne.
Remark 3.17 The rst jet manifolds J 3(V(Q)) and J 3(V (Q)) possess the coordinates
JSVQ) 1 (t%asa(a)ei(a))
ISV Q)+ (t%a;a;i(a)i(a)):

To make the mapj 1(g) linear, a linear connection and its dual  is chosen such that

(@) o0 =9 (A)o o) (a) =g ((20) )
is met. Rewriting the expressions we get
(@)= 9 o 9 o: (@)= g g (3.17)

Remark 3.18 At this point again it is worth mentioning that the relations (3:17) can be
interpreted asr (g) = 0 for a time dependent metric.

Remark 3.19 We additionally have

q

1 -
——@ |det j = 3.18
Pm jdet(g )] 0 ( )

which is the analogy to the relation (2.13) for the time compoents, where the proof can be
found in the Appendix A.3.

Remark 3.20 Let us consider a motiors (t°) and the corresponding generato® + @s @
together with the sectionsi;v: Q !V (Q), which are parallel along the motions (t°): A eld

u:Q'!'v (Q)isparallelalong@+ @s @ if
(@+ @s @)cr (U s)= @UuU s) ,u u@ @=0
is ful lled : The formal expression
@guv s=(@ +@ @ )uv +g v@u s)+g u@v s
which is
@Qguv s = @ +@ @ +4g 0o T @ +g o @ uv

shows that the vertical metric will preserve the inner pro@tialong a motion if the relations
(3:17) hold.
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The second equation of (3.17) is exactly the same as in sectin 3.1.2 and therefore we
obtain the same result for the coef cients

2 = ¢ (@g + @g @g ): (3.19)

The equation (3.19) relates the connection coef cients with the metric g and the
demand to obtain a similar expression for , can not be achieved, since the rst equation
of (3.17) is much more delicate and we will show that to proceed one can obtain an
expression that relates @g- with the connection and the metric g. Therefore let us
consider an inertial system where the manifold Q possesses the coordinate¢q ;t°) and a
trivial connection =dt° @with , =0: Then the metric is given byg=g dq dq:
Again a bundle morphism of the typeq ="' (q ;t9,t°= °(t% is considered

Remark 3.21 In this case we use exceptionalty = °(t°) instead oft® = 3t° in order to be
more general.

The computation proceeds as follows. Let us consider
@g9g )=@ (g m"(@") @" (3.20)
The right hand side of equation (3.20) can be evaluated as
g (@")(eM)+(@")(@") +(@")(e@")(@y )(@ )

and using equation (A.5) this consequently leads to

g (@ )e @ @@ )+(e")e @ @ @ )
@ )(@" )(@g )@ Y@ )@ : (3.21)

The next step involves the transition function for the connection coef cients (3.6) and
therefore we can use

0o~ @/\0@,

This leads to

@g )= g (@")e(,@)+(@")0e(,@) (@)@ )(@g )(@'2) 0):
3.22
Let us consider the formal expression

@ = @(g "MN@™) en (3.23)
=g (@)@ )+(@™)(@") +(@y )@ )" )(@")

and combining equation (3.23) with (3.22) we obtain

@9 )= (@ ), 9 (@, g (@,

and omitting the bars we have the relation

@ = (@9 (@yg (@3 ) o: (3.24)
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Combining the rst equation of (3.17) and (3.24) the desired result follows as
o =(@ o) 0 - (3.25)

We see that are obviously the Christoffel symbols of the second kind and , play a
crucial role when the space-time connection is not trivial.

Remark 3.22 The connection in an inertial coordinate system with Euclidean coordinate
(q ;t% reads as

=d t° @+dq @

and the transitions functions after a bundle morphism of theypeq ="' (q ;t9),t°= (t9
follow from the relations (3.12) to

@~ @' @ q-= q
.= @@ @9 , =@, , 4= ,q

and this is exactly the result of relation (3.25). The dual reult follows from the relations
(3.14) as

@ @ 4= q

» = @ a+@" @" @ 9+@ , @

@@ +@'e"@ @ @@ q

@ @ @'e")e +@'e"@ @ @@ a
@.)e"e@ e e +@'@ e"e @ '@ q
@ , 0 = oG

where essential use of the equation (A.5) was made. This ofis® shows again the relation-
ship

where we used the equation (A.2)
(@' ) e (e*)= (@ )en

from the Appendix.

Some Important Formulas

This paragraph is devoted to the introduction of two useful relations involving covariant
derivatives. The rst one is given by

ro(w)eg=r (wcg) (3.26)
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for any vertical eld w:Q !V (Q) andthe metricg:V(Q) 'V (Q) and this can be easily
veri ed in coordinates since

r (weg=g (@v o w)dt’+(@w w)dg  (dg  odt°)
and
ro(weg) = (@wg ) owg)dt®+(@wg ) w g )dqg dg  odt°
= (9 @vw +w@g  owg)dt® dg Hdt°
+(g @w +w @g w g )dq dq odt®
With the relations (3.17) which were given as

(@ )= 9 o 9 o, (@)= ¢ g

and the fact that

is met, we obtain
r o (weg)=g (@w ,w)dt’+(@w w )dg dg  odt°

which proofs the equation (3.26).
The second construction is given by

ro(wye +wer ()= @w! )dt®+ @( w)dq
with w:Q!V (Q)and! :Q!'V (Q). We derive the expression
r(w)c +wer (!)=d(wc!) (3.27)
since in coordinates it is obvious that we have

r (we +wer (1) = ! (@w o W )dt’ + (@w w )dq
*wo (@ o ! )t +(@! ! )dq

and since the dual connection coef cients cancel we obtain

row)e +wer (1) = (! @ +w @ )dt°+(! @w +w @! )dq
@w ! )dt®+ @( w)dq :

The Vertical Covariant Differential

To compute the change of the velocity of a mass point along a mtion the vertical vector
eld v has to be restricted to the motion. This means that we have to bcus onr (v j(s))
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and we see that the bundleV(Q) ! B plays a key role in point mechanics. Let us consider
the composite bundleV(Q) ' Q!B and the connection on Q!B

=dt’® (@+ @)
as well as the connection onV(Q) ! Q that splits T (V(Q))
=dt® @+ ,94@ +dg @+ q@

The composite connection as described in section 2.4.3 reaslas

=dt® @+ ,@+(@ ()9 @
where we used

0o =(@ o) 0 -

Thus the covariant derivative with respect to this composite connection is

r(s;i9)=dt® (@ , 5)@+(@ (@ ) 9)s)@

where (s;s) : B!V (Q), in coordinatesq = s (t°) andg = s (t°: Following the de ni-
tions of section 2.4.3, the vertical part with respect to the connection is

F(s;9)=dt® (@ (@ o) 9)s) ( s)s (@s o S @
and settings= v j(s) delivers

@cr (s;v jH(sN= @V () (v @ o) (9 vv () @: (3.28)

To compute the change of the momentum similar arguments as albve hold. Now we have
the composite bundle structureV (Q) ! Q!B  andthe connection on Q!B as before
as well as the connection onV (Q)!Q thatsplits T(V (Q))

=dt® @+ ,q@ +dq @+ q@
The composite connection in this case splitsTg(V (Q)) and reads as
=dt® @+ @ (@ ()@
and the covariant derivative with respect to the connection is
ro(s;s)=dt® (@ o 9@+ (@s +(@ o) 9)s5)@

where (s;s): B!V (Q), incoordinatesq = s (t° andg = s (t°: The vertical part with
respect to the connection follows as

r(s;s)=dt° (@ +(@ ) s)s) ( S)s @s s S @
and settings = p j(s) gives

@ (sip j'(sN= @p ') H(P@ o) () ( pv) ji(s) @: (3.29)

It should be observed that in contrast to and the connections and are not
dual since V(Q) ! B is not a vector bundle.
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3.2.5 Equations of Motion

Let us consider a motions : B!Q together with v¢ = @ + @s @: The velocity of a
motion s is a vertical eld v and the momentum has been introduced as the object dual to
v with respect to the metric. To derive the evolution of a mass particle we are interested
in the change of the velocity or equivalently the momentum along the eld vs: Forces can
be handled using Newton's postulate that the total change ofthe momentum of a mass
point equals the force acting on it. The results here are given in a pure covariant fashion
formulated with respect to a space time connection, which allows to consider non trivial

observers.

The Change of the Velocity

We use the covariant derivative (3.15) and the demand that the vertical velocity eld is
parallel along the motion s, leads us to compute

veer (v ji(s) =0
which reads as
(@+ @s @)c @V j'(s) o (v j'(s) dt° v ji(s) dg @=0

and this results in the rst order differential equations

@v j's) (ov) i v o ji(s) (@s) =0:
If we plug in the connection coef cients (3.25) we obtain
@v j'(s) (v @ o) (s v ojte) (@ 5 9=0
and nallyifweuse v j(s)= @s o Swe have
@s @ o s) (V@) j'(s vv  ji(s)=0 (3.30)

and this result obviously coincides with the relation (3.28) which reads as
@cr (s;v ji(s)=0:

Remark 3.23 It is worth mentioning that there is a difference betweewncr (v j!(s)) and

@cr~ (s;v j1(s)), although they produce the same set of equations. The cotioec splits

the bundleT (V(Q)) with respect toV(Q) ! Q and therefore the covariant differentiakr

is used to compute the change of sections: Q !V (Q), which meansq = w (t%;q): In

point mechanics this sectiomw is identi ed with the velocity which has to be restricted tohte
motion of a single mass point, which explains the usewf (v j!(s)): The vertical covariant
differential already is appropriate for the bundle structte V(Q) ! B ; which is the desired
form since in point mechanics the motion and the velocity afenctions of time.
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The Change of the Momentum

The dual construction is based on the use of the covariant deivative (3.16) and we com-
pute

vser  (p ji(s)=0
which gives
@p ') (op) i'(s) @s( p) j'(s)=0:
With
0o =(@ o) 0
this follows to

@p j*s)+ @ o P jt(s)+ @s p jXs)=0":

Consequently
@p '+ p @+ v ji(s)=0
and this is exactly the equation (3.29) which was given as

@cr (sip j'(s)=0

and furthermore we have

@p j*(s)+ p@ o+ g pp jis)=0:

1
m
From the relation
. 1 . .
gpp j9=s @5p "G G P ')
which is given in full details in the Appendix A.4 we obtain
i1 1 1 1 A — .
@p TGN+ @G- P TG P JE)FP@, [(5)=0:
If we introduce the kinetic energy of the mass particle as
H - 1 0
P= ng_ a P

we can write

@p PTEN+H(P@ ) ()= (@H) p) (s

and furthermore from

@H p j'(s)

g p+pg j(s

g p (s

2m
1
m

we additionally obtain

@ o s= @H p j'9:
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Forces

In the following, we treat the case where forces act on a pointmass. Letm 2 R* denote
the mass of the considered point mass and the force eld that acts on the point mass is
givenbyF : Q!T (Q) asF = Fodt® + F dqg : The equations of motion follow to

m vser (v ji(s) =(cF) s: (3.31)

Remark 3.24 The case where the force eld depends on the velocity for epacan be ac-
complished by the choice & : Q! ( o) (T (Q)) with o :V(Q)!'Q .

It is worth mentioning that ¢cF contains the vertical part of the force, only. From
(3.31) and (3.26) we easily see that

vser  (p j1(8)=( CF) s (3.32)
is metwith . =(dq odt%)  @: If the force eld admits a potential, we can introduce

a function V 2 C! (Q) such thatdv = F is met.

3.2.6 Energy

Let us consider the relation (3.27) which reads as
divep jr(s)=r1 (v j*(shcp ji(s) + v ji(s)er (p jr(s):
A contraction with vg leads to
%@ voveg ji(s) = vedV i (s) (3.33)

where the computation can be found in the Appendix A.5. The total energy of a mass point
is given by m
E= Evcvcg+ \

and the change of the energy along the motions can be expressed as

@E j'(s) = @ gvcvcg jtf(s)+ V s

This can be rewritten with the help of (3.33) to obtain

@E ji(s = vedV ji(s) + @(V )
= (@QV+ ,@V) s:

It is worth mentioning that in an inertial system with trivia | connection =dt® @ this
reproduces a well known relation.



3 Point Mechanics 3.2.7 Application - Rigid Transformation 34

3.2.7 Application - Rigid Transformation

When the motion of a mass point is observed from a moving and rdating coordinate
system it is well known that several ctitious forces appear, see for example [Arnold,
1989]. We want to study this classical example, using jet theory and connections and
describe especially the acceleration of the coordinate sytem using the developed theory.
Let us consider an inertial system with Euclidean coordinaes(q ;t° with trivial metric

g= dg dqg

and a rotating and moving coordinate system with coordinates (q ;t°): The relation be-
tween these systems is given by

qg=R) g gt ="' (q:t9
with
R R = (3.34)

where R is a classical rotation matrix and the functions ¢ (t°) describe how the origin
of the moving coordinate system is translating. It is worth mentioning that the metric
stays constant, since we use a rigid transformation. The imprtant fact is that we have to
introduce a non trivial space time connection which in the moving system is given as

0= @ (@t 0= (% R (t)@q

with =@R R 8: Now let us evaluate the equation (3.24) and since the metric in the
rotating coordinate system stays trivial because of (3.34)as mentioned already, we obtain

0 g (@, 9 (@),

0

and this just says that is skew-symmetric as it should be since by a slight abuse of
notation we obtain

This is easily veri ed also from

R R =
@R R +R @R =0
@R R + @R R =0

- =0

and this shows that the equation (3.24), which is crucial whe n time variant metrics appear,
is also meaningful for this classical example.
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The acceleration follows from the equation (3.30) with t° = 8t° and reads as

@s @, s) @ ,(@ , 9

since the Christoffel symbols vanish, because the metric is preserved trivial by our
transformation, we obtain

@s @ s R@g @ (s R @)

which follows to

@s @ s 2 @s + S +R @ : (3.35)
In expression (3.35) @ s is the inertial force of rotation, 2 @s the Coriolis force
and s the Centrifugal force with respect to a unit mass and this is aclassical relation

which in most books is written as
Sy +!1¢ s+2! s+ ' s+ Rog,

where ! is the associated vector to : This example shows that the classical formulas
of rigid body dynamics can easily be derived and interpreted by the use of a space time
connection and the covariant formulation, which in this case involves the so-called angular
velocity tensor

3.3 The Lagrangian Picture

3.3.1 The Euler Lagrange Operator

This section is devoted to the description of point mechanics in a Lagrangian formulation.
This is a well known topic and the rst part summarizes just a f ew familiar facts. Then it
is our goal to nd a formulation which ts to the covariant tre atment of section 3.2. We

again use the bundleQ ! B and we consider a variational problem such that

Z
0= d ittt s L dt®
d o o

is met for variations of the motion s : B! Q ; with an admissible vertical vector eld
:QV (Q); whose ow is denoted by * . with " 2 ( a;a); a2 R and D denotes the
interval [td.t]]: This leads to (see [Saunders, 1989, Giachetta et al., 1997])
Z

0 = it(s) itO)(L)
z° Z

= i*(s) G*()edL)+ i*s) it()eL
@

D

with the Lagrangian density L = Ldt° We use a Lepagian equivalent forL = Ldt° and
choose the well known Poincaré-Cartan form

L= Ldt°+ @L(dg q,dt%:
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Remark 3.25 For this particular example a Lepagian equivalent meets
Z
i1 — 1
js) (L)= j(s) (1)
D D

and the important fact with respect to Lepagian forms is thgt! ( )c(d ) does only depend
on the components of the vector eld hence not on their derivatives.

Given a bundle E ! X , exterior n forms on J '(E) are denoted by *"(J "(E)) and
the horizontal projection h, thenis a maphy, : A"(J 1 (E)) ! ~ *" k(1 (E)); where el-
ements of %" X(J 1 (E)) are denoted k-contact forms, see [Giachetta et al., 1997] for
an extensive discussion. The horizontal projectionhy for this particular case of a bun-
dle with 1 dimensional base and rst order Lagrangian (see [Krupka, 1981]) is a map
ho : 213 Y(Q)) ' 9Y(J Y(Q)) and reads

dt®7! dt®; dg 7! qdt®; dg, 7! qudt°:

Thus we have

( L)dt°
c( L) ~dt°

ho j*()c(d )

with the variational derivative
=@ dd@; do=@+ @ + 000@

and the contact forms
=dq qadt°

where the detailed computations can be found in the Appendix A.6.1. The operator

B J¥Q!'T (Q"T (B)

E = (L) ~dt
is called the Euler-Lagrange operator associated with the hgrangian density Ldt%; see
[Giachetta et al., 1997].

3.3.2 Covariant Mechanics

In context with point mechanics we consider the Lagrangian density L = Ldt° with La-
grangian L 2 J %(Q)): In particular we consider the special Lagrangian density

L dt©

%vcvcg dt® (3.36)

= 20 @ @ od% g ,2C(Q):

From the calculations above we immediately observe that thevariational problem has to
satisfy the Lagrangian equations

j’(s) do @dL @L =0: (3.37)
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If we plug in the Lagrangian from (3.36) into the equations (3 .37), then a straightforward
calculation, which is given in full details in the Appendix A .6.2, leads to

(L) = J%9) o doo (@ o)k o) 'O (% )% o)

@s (o) i'(s) (v@ ) j'(s) ( vv) ji(9
@s @ o9 (V@ j's) ( vv) ji9

with

i) (@ o)= @s o S=V ji(s)
and this is the same as the equation (3.30). Therefore it can k& concluded that the co-
variant approach based on connections and the correspondig differential operators as

described in section 3.2 is equivalent to a variational problem using the Lagrangian den-
sity (3.36).

Remark 3.26 Itis easy to verify that the Lagrangian
1
L = Em (veveg) V

yields the same equations as the relations (3.31) withbl=  F:

3.4 The Hamiltonian Picture

Let us introduce the Liouville form : T (Q)!T (T (Q)) which in coordinates follows
to

= tedt®+ q dq :
The Hamilton form ! | isdened by h () withasectionh:V (Q)!T (Q) and reads as
ly=pdg (H+p ,)dt°
with the Hamiltonian function H 2 C (V (Q)):

Remark 3.27 In this section we do not distinguish the coordinateg and the functionsp 2
C! (Q) as rigorously as in section 3.2.5. Furthermore, to obtain thresults compatible with
the standard literature the coordinates fow (Q) are denotedt®; q ;p ) instead of(t%;q ;q ) :

Example 3.28 The classical Hamilton form as it can be found in [Abraham antflarsden,
1978, Frankel, 2nd ed. 2004] reads as

!H:pdq Hdto

(q ;t9, t° = Jt° leads obviously to

ly=p (@~ (dg @ dt) H gdt°

and a change of coordinateg =

and therefore
lp=pdg (H+p g)dt°
which is of the desired form.
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The Hamiltonian vector eld vy :V (Q)!' T (V (Q) follows from the relations
vged! y =0 ; wyedt®=1

as
VW=@+@H+p J@ @MH+p ,)@: (3.38)
To see this let us compute
dy = dp ~dg dH~dt® d(p o)~ dt°
dp ~dq dH + ,dp +p (@ ,)dg ~ dt®:

The contraction with the eld

VW =@+9@ p@

leads to

vy cd! 4 @Hdg + @Hdp + dp +p (@ 4)dg pdg qgdp

(QGH+p(@ (o) p)dg+ @H+ , q dp

and the result follows at once to

g = @H+ =@ H+p ,
P @H+p(@ o)= @H+p o):

3.4.1 The Composite Bundle Structure

Now we discuss the composite bundle structure as it appearsn this Hamiltonian setting.
Therefore, let us inspect the composite bundleV (Q) ' Q!B , as well as the bundles
Q!B ,V(Q)!Q andV (Q)!B which are visualized in the following diagram.

V(Q) (t%aq;p) V(Q) (t%a;p)

b
Q(t%g) Q((t%q) Qs
B (19 B (t9 B (t9)

We have a connection on Q!B that splits T (Q)
=dt® (@+ ,@)

and we have another connection onV (Q) ! Q thatsplits T(V (Q))

=dt° @+ ,9@ +dg @ + qQ@
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From section 2.4.3 we immediately obtain the composite conrectiononV (Q) !B as
h=dt° @+ @+( o+ o, Q)@
and with the equation (3.25) which can be written as

0o = (@ ) 0

it follows that

H=dt® @+ (@ (@ op @ (3.39)

is met, which will be called the Hamiltonian connection.

Remark 3.29 Of course the Hamiltonian connection (3.39) already appead in the section
3.2.4 and was termed there and used to construct a covariant derivative. Since we will
use the connection here to split the Hamiltonian eld, we havdecided to call it Hamiltonian
connection.

3.4.2 The Splitting of the Hamiltonian eld

This connection (3.39) enables us to split the Hamiltonian vector eld (3.38) into a vertical
and horizontal part, respectively. We easily see that

Viv = @H@ @H@ (3.40)
@+ ,@ (@ ,)p @ (3.42)

is met according to the Hamiltonian connection (3.39). The computation of the change of
the form H dt® along the Hamiltonian vector eld is based on the very useful formula

VH; H

Vi (H dt°)

d( vy cH dt% + vy cd(H dt°)
Vi 4 (H)dt° (3.42)

with vy.y from (3.41), where the detailed calculation can be found in t he Appendix A.7.1.
Now we consider an extended Hamiltonian of the form

H=Hy, Hu; HgH 2C(V(Q) (3.43)

with the input functions u 2 C! (B). From the relation (3.42) together with (3.43) we see
that

VH (Hodto) d( Vy CH odto) + Vy Cd(H odto)

(Vi;h (Ho) + Vv (H-)u') dt®

is met, where the details are omitted and can be found in the Appendix A.7.2. Obviously
the choice of the output y- = vi.\(H-) allows a physical interpretation of the power ows
of the system, sincevy.4 (Ho) corresponds to the power caused by the free HamiltonianH
and the product y-u" describes the power ow into the system caused by the input.
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Remark 3.30 Furthermore, from the Liouville form : T (Q)!T (T (Q)) one derives
the symplectic form
=d tg" dt°+dqg ~ dq

and the corresponding Poisson bracket
ff,gg= @f@g @@ + @f@g @gaf (3.44)

for f;g 2 C! (T (Q)): In [Giachetta et al., 1997] it is shown that there exists a vdical
restriction of the relation (3.44) which reads as

tf;gg, = @f@g @g@f

which will be used in the following. Let us compute the Lie deative of a functionf 2
C! (V (Q)) along the eld vy which reads as

vi(f)= @+ @ (@,)q@ f+fH;fg,

therefore the change of the Hamiltonian alongy follows to
vi(H)= @+ @ (@,)a@ H (3.45)

sincef H; H g, = 0. This obviously corresponds to the formula (3.42). It is wéin mentioning
that  is a Hamiltonian connection in the sense of [Giachetta et all997], since the form

wec dg ~dg 2 dt° @ (3.46)

is closed. In this concrete example we evaluate (3.46) andaib
d’° @+ ,@ (@ ,)9@ cdg”~dg"dt’® @

which is
dt® dg ~ dq odg 7 dt® (@ ,)adg ~"dt° @: (3.47)

The requirement that the form part of (3.47) is closed leadssuo compute
donhdg A dt® d (@ o)g ~dg A dt

which is
@ odg ~dg ~dt® (@ ,)dg ~dg A dt®=0
and shows the assertion.

Example 3.31 Let us consider an inertial system with Euclidean coordirest(q ;t° and a
rotating coordinate system with respect to the inertial onguch that the relation

R () =" (a1
o

q
to
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with
R R =

is given. The Hamiltonian of a mass particle in the non movingystem is given as

1

H:%p p

and the space time connection follows to
0= @R (t99) ;=@R)oa = @R)R 5a = 0

which should be compared with section 3.2.7. The Hamiltomain the rotating coordinate
system is

! o Cp= b -1
H=o-@ p @ p=5-pR Rp=_p p

and it is worth mentioning that
@H =0

is met because of the rigidity of the transformation. The chge of the Hamiltonian computed
in the moving system gives

Vy(Hdt?) = vy.y(H)dt°= @H+ , @H p@, @H dt°
and in this concrete example
1
Vaon(H)= p @ oap = p —=p = —p P =0
because is skew symmetric.

Example 3.32 Let us consider a similar situation as in the foregoing examepbut we do not
use a rigid transformation but

q =" (=R (t%q

with
R R 6

The space time connection follows to
0= @R (99) 9= @R ) oq = @R )R g
and the Hamiltonian in new coordinates is
1 1
H= _—@ ' = —pR R
Zm@ p @ p Zmp Y
where it is worth mentioning that now

@H 60
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is met. The change of the Hamiltonian in this example reads as

1
un(H)= - @R)p Rp+Rp @R)p 2p@R) Rp =0
where the usability of the operator (3.42) is shown and the esntial conclusion is that al-
though H seems time dependent, the conservation of energy is obtdjmecause of the special
intrinsic construction of the operator (3.42).
Remark 3.33 The case of a general transformation
q =" (q;t)

can be treated in a similar way.



Chapter

Continuum Mechanics

The analysis of the deformation and the motion of a continuum is rich of geometric ideas.

In literature multilinear algebra is necessarily introduc ed for the consideration of con-

tinuum mechanics, but in many cases only the components of tle involved tensors are
considered in the manipulations and a detailed description of the spaces, where these ten-
sors are de ned, is missing. An exception with regard to these circumstances are beside
others of course [Marsden and Hughes, 1994, Prastaro, 1996]who use advanced differ-

ential geometric methods and self evident treat tensor algéra in a much more detailed

way.

The goal of this chapter is to extend the constructions gainel when examining the
motion of a mass point moving in space to the case of a continuum, where we want to
pay attention to a rigorous geometric speci cation of all th e involved maps and tensorial
objects. We will use the con guration bundle : Q!B presented in section 3.2 and
it is worth mentioning that all the results concerning the me tric, especially the covariant
derivatives, can be used to describe continuum mechanics. fie main difference to the case
of point mechanics is the consideration of mass densities ad the appearance of vector
valued forms instead of vectors. The covariant derivativeswe have constructed so far will
be used in the forthcoming, however, in the Eulerian formulation r (V) is used instead of
r (v j(s)) as for point mechanics. This leads to a construction which iswell known as
the material time derivative. The main purpose of this chapter, which is based on [Schoberl
and Schlacher, 2006b], is the derivation of the conservation of mass and the balance
of linear momentum. The balance of moment of momentum will not be considered by
making the constitutive assumption that the Cauchy stress énsor (or equivalent the 2nd
Piola tensor) is symmetric. This guarantees that the balane of moment of momentum is
ful lled.

In section 4.1 the Eulerian picture of a continuum is analyzed. This part shows how the
geometric ideas presented so far can be generalized when masdensities and vector valued
forms appear. An important tool will be the Nijenhuis differ ential which is a covariant
derivative applicable to vector valued forms and was presenied already in section 2.5.
Beside the balance of mass and linear momentum also an energgelation will be derived in
section 4.1.3. Section 4.2 is devoted to the Lagrangian pictire of a continuum. This part is
dominated by the description of the so-called Piola transfamation which allows to express

43
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the spatial quantities used in the Eulerian setting in material quantities. In addition, a
variational approach and the Hamiltonian description of a continuum are presented in
section 4.2.5 and 4.2.6.

4.1 The Eulerian Picture

The Eulerian description of a continuum is based on the ideaspresented for point me-
chanics in section 3.2. We use the same con guration bundle & in Figure (3:1) but we
replace the point mass by a mass density as shown in Figuré4:1). The Eulerian picture
describes the motion of a continuum in a spatial description and this is very popular in
uid dynamics.

Generator v

Continuum

Fibre B

Figure 4.1: The Con guration Bundle in the Eulerian Picture

An alternative approach concerning uid dynamics can be found in [Luo and Bewely,
2004], where the authors consider the Navier stokes equations in general time variant
curvilinear coordinate systems. In contrast to the approad proposed in this thesis they do
not use the splitting of vector bundles to derive the differential operators.

The same vertical metric is considered as in section 3.2

g=g dq odto (dqg odto) ; g 2 C' (Q)

and a volume formvol : Q! " (V (Q)) is introduced as
q__
vol = jdet(g )i(dg"  gdt®)~ /A (dg”  5dt%); o9 2CH(Q) (4.1)

in order to be able to carry out integrations over the bres. A motion in the Eulerian
picture is an isomorphism : Q! Q that maps a con guration at t° to a con guration at
0= t%+ . The in nitesimal generator of isthe eld v = @+ v @ with v 2 C! (Q):
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Remark 4.1 The construction of the velocity is based on the observasantroduced in section
3.25. The eldv = @+ v @; which generates the ow, leads to a vertical velocity eld
Y, o: This is the desired analogy since from = @+ @s @ we constructed®s o S:

The main difference is that in point mechanics the velociteld is restricted to the motion of a
single mass point. This is the reason why we used(v j!(s)) or the corresponding vertical

covariant derivativer- (s;v j1(s)):

4.1.1 The Mass Balance

The principle of conservation of mass states that the mass o& material region is constant
with respect to time. We assume that there exists a function 2 C! (Q) called the mass
density. The mass of the continuum is de ned as

Z

m = vol = ¢
U
with ¢ 2 R*; where this integral has to be evaluated at a xed time t>andU C Q
where U is a nice domain of integration and C corresponds to a con guration of the con-

tinuum. The conservation of mass states that
Z
d 0
el vol A dt =0 (4.2)
d (U’tO) =0
has to be met.

Remark 4.2 Roughly speaking the wedge product wittit® is equivalent to the restriction of
vol to dt® = 0, which is a xed bre of Q.

The relation (4.2) is equivalent to
Z

v (volrdt® =0 ;
(U;t9)

see for example [Frankel, 2nd ed. 2004]. Finally the consenation of mass reads as

v()+ div(v)=0 (4.3)
since U has to be arbitrary with
. 1 9 ——— 9 ——:
diviv)= p———— @ jdet(g )j+ @(v jdet(g )j) (4.4)
jdet(g )]

where a detailed computation can be found in the Appendix A.8.1.

Remark 4.3 We want to point out here that the equation(4:3) is the standard equation as
can be found for example in [Marsden and Hughes, 1994] for thmase of a trivial space time
connection = dt® @ and the novelty considering the relation (4.4) is the fact tt the
mass balance can be formulated with respect to a non rigid cdimate system, i.e. the metric
becomes time dependent. This is easily veri ed by the eqaat(4.4) since the time variance
of the metric can be taken into account.
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Remark 4.4 With

q q

1 T 1 Y
= p———@ jdet | ; = Pp—=——@ |jdet -
RG] jdet(g )] 0 dotg ), jdet(g )j
the equation (4.3) follows as
1 9 ——-: 9 ——-: 9 ——:
V)t e o Jdet(g )j+ @(v) jdet(g )j+v @( jdet(g )j) =0
jdet(g )j
or
v()+ @v o V =0:
Then by applying
0o =(@ o) 0
we have
v(i)+ @v (@ )+ o V =0
v()+ @(v 0) (v 0) = 0:
The nal result reads as
v()+ @v v =0; (4.5)

where it is worth mentioning that bothv andv = v o appear.

4.1.2 The Balance of Linear Momentum

In contrast to point mechanics the equations for the balanceof momentum are much more
intricate since we are confronted with vector valued forms as can be seen from the relation
q Z Z Z

— vol v@ = vol b@+ @cvol @ (4.6)
d (U;t9) (Ut0) (@it%)

which is evaluated at a xed point of time t°: The equation (4.6) states that the total time
change of the momentum equals the force acting onU, where v : Q 'V (Q) is again the
vertical part of the the eld v and meetsv = v o- The right hand side of equation
(4.6) corresponds to the forces, where

vol b= vol b@
represents the volume density of the body forces and
= @cvol @

is the Cauchy stress form, which describes the density of thesurface forces. The symmetry
= Is assumed.
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Remark 4.5 In chapter 3 the momentum and the forces have been considesisctlements of
V (Q). Itisimportant to stress out the fact that in equation (4.6)the metric: VvV (Q) 'V (Q)
was used to convert the covector valued forms, which appeaturnally being conform with
our previous de nitions, into vector valued forms, using =4 .

As already mentioned the dif culty here is the treatment of v ector valued forms. To
overcome this problem we follow the approach proposed in [Schlacher et al., 2004]. We
choose a sectiong : Q!'V (Q) that meetsr (g) = 0 which enables us to convert the
vector valued forms into true forms

Z Z Z

— vol(veq) = vol(bcq) + q @cvol : 4.7)
d o (Uit0) (@it0)

Remark 4.6 It is worth mentioning that the conditionr () = 0 is important to guarantee
that the total time change of the momentum is computed cortég i.e. it is not affected byq.
This fact will be discussed later on in this section.

The surface integral of equation (4.7) can be reformulated by applying the theorem of
Stokes, see (2.8), to get the relation
Z Z

q @cvol = d g @cvol (4.8)
(@;t% (U;t%)

The Nijenhuis Differential of the stress form

Let us consider the vertical bundleV(Q) ! Q and the connection that splits To(V(Q)).
In the forthcoming we want to apply the Nijenhuis differenti al, which was introduced in
section 2.5, to continuum mechanics. For this bundle constuction it is a map

d :(*'T(Q) PoV(Q)! (*™T (Q) V o(V(Q)

where P (V(Q)) is a projectable vector eld on V(Q) ! Q . We consider the vector valued
form

= @wol @2 (""" 'V (Q) V (Q)

together with the natural isomorphism Vo (V(Q)) V (Q) oV(Q). Itis worth mentioning
that this case was treated in example (2.5). The Nijenhuis diferential applied to is a
map
d :(*" 'V (@Q) V(@Q! (*"T (Q) V (Q)
and in coordinates we have
h [
d()= d( @cvol) 0 dt® + dg " @cvol @: (4.9)

The goal is to rewrite the right hand side of the equation (4.8) and with the presented map
(4.9) we obtain the result as

d(cg=" c (q +d ()cq (4.10)
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where " (r) denotes the replacement of by ” in the expressionr: Equation (4.10) follows
easily from

d( cg)=d(q @cvol)=dq " @cvol+q d @cvol (4.12)
and

Mer (@ =" @ovol  (@g  ,q)dt°+(@q q)dq

The equation (4:10) will turn out to be one of the key relations for an intrinsic fo rmulation
of continuum mechanics.

Dynamic Equations

With the latter results the balance of momentum relation (4. 6) can be analyzed closer. We
again integrate for xed time t°, thus we consider
Z Z

v vol” dt®(veg) = vol A dt®(bcq) +d ( cq) ~ dt®: (4.12)
(U;t9) (U;t9)

Remark 4.7 The wedge product withdt® has the same interpretation as already discussed in
remark 4.2.

The left hand side of equation (4.12) can be expressed as
Z Z
v vol” dt®(veq) = v (vecg) vol A dt® (4.13)
(U;t9) (U;t9)

since the balance of mass implies
Z

(veqv  vol~ dt® =0
(U;t9)
To analyze the right hand side of (4.13) we make use of the equdion (3.27) and derive
v (vegy=veced(vegp=ver (veg+ ver (0

Therefore, the balance of momentum relation can be rewritten as
Z Z

v er (v)eg vol” dt® = vol A dt® b+d ()~ dt° cq (4.14)
(U;t9) (U;t%)

wherer (g) =0 was used Let us rewrite the equation (4.14) as
Z
ver (v) b volrdt®  d ()~dt° cg=0 (4.15)
W) | {z }

\

where

v2V(Q) (M(V(Q)NT (B)
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is met. If we plug in a solution, the expression v has to be annihilated by all admissible
g2V (Q) whichmeetr (qg) =0 or, equivalently, v has to lie in the kernel with respect
to the associated inner productV(Q) V (Q)!C * (Q) where we used the inverse of the
metric §:V (Q) !V (Q). In this context it is worth mentioning that the admissible g can
be interpreted as geodesics with respect to the covariant davative r  : Since the relation
(4.15) has to hold for any U we conclude that v has to be annihilated by the geodesicsg
implying that

volrdt® ver (v)  wvolrdt® b od()Adt°=0 (4.16)

has to be met. This equation(4:16) is the balance of momentum relation which is valid
also when the reference frame is changed, since we use an ininsic de nition of the ac-
celeration term and the volume form and the Nijenhuis differ ential of the stressd ( ) are
formulated with respect to the connections and

The coordinate expression of equation (4.16) can be computel as follows
ver (V)= @ +v @ V@, VvV @
and the more intricate expressiond ( )~ dt° reads as
d()rdt® = d( )" @cvol+  d(@cvol) + dg » @cvol M dt® @

qi 1
= @( )+ @ jdet(g )j(jdet(g )j) *+ volh dt® @:

From the formula (2.13)

1 9 ——F:
= p=———@ jdet(g )j (4.17)
jdet(g )]
we nally have
d() dt°= @ vol» dt® @

In the end the balance relation in coordinates is given by
@ +v@v V@, Vv = b +@

Example 4.8 In order to show that this equation reproduces the standardjeations for a
non at metric let us consider the case of an inertial systemith  =dt® @andv = v :
We then obtain

@v +Vv @Qv vV V =b +@

which coincides with the results of [Marsden and Hughes, 149
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4.1.3 The Balance of Energy

In order to derive an energy relation let us consider the vertical metric g: V(Q) 'V (Q)
which can be interpreted as a mapg: V(Q) V (Q)!C * (Q). We use this map to rewrite
the equation of balance of momentum (4.16) such that

vol ~ dt® ver (v) boveg=(d ( )cveg)” dt®
is met. By means of (4.10) the right hand side can be rewritten as
(d ()eveg) A dt®= d( cveg) ™ cr (veg) A~ dt?:
A calculation in coordinates, see the Appendix A.8.2, gives

Noer o (veg) Adt°= " ¢ %v (@ ~dt?, (4.18)

where v (g) denotes the Lie derivative of the metric along the eld v . Therefore, we
obtain the relation

vol ~ dt°® ver (v) beveg= d( cveg) c%v (@ ~dt°: (4.19)
In coordinates, see again the Appendix A.8.2, one can verifjthat
1
ver (V) cveg=v évcvcg

is met. Finally the equation describing the energy ows can be expressed as

Z Z
1
v Zvgv + d wvolrdt® = bg v vol”dt®
(U;t9 2 ZU;tO)
+ Vg @cvol ~ dt°
(@;t%)
with the components of the rate of the deformation
d = > g @v vV +g- @v v

Some remarks on the rate of the deformation tensor and the praof of
(O 1 0
d vol” dt” = cév (g ~dt

can be found in the Appendix A.8.2.
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4.1.4 Application - Stagnation Point Flow

Motivated by the work of [Luo and Bewely, 2004] let us show how the derived relations
look like for the problem of a stagnation point ow. We consid er a con guration bundle

E !B with Euclidean coordinates (t°; q'; ¢?) for E and t° for B, with trivial metric and

trivial space time connection

g= dq dq; =dt’ @:
The Euler equations, see [Marsden and Hughes, 1994], read as

(@Qv +vav) = @[ )

with the pressure function p; where = pg§ was used. For

2
P= - q 2+ P2 o 2R

it is veri ed that

vi= gl: V2= 2
holds and the balance of mass is ful lled with 2 R. The ow is given as

1 2

d=eq; g=e q; 0=+t

Let us consider a diffeomorphic change of coordinates of theform q ="' (q ;t° with
¢ = " HaGt)=(d'+ a%e
¢ = "AGht)=(F ghe’
0 = t°

and ; 2 R, which coincides with the one presented in[Luo and Bewely, 2004] for = ;
= 0: Then itis veri ed from the transformation law for the connec tion coef cients (3.6)
that we have

— @ll N — ql’ S: @12 n — q2

since , = 0; which means, that in contrast to the inertial space we have a ron trivial
space time connection : From the trivial metric in the inertial system g = dg dq
and the transformation law
we obtain the nonzero metric elements in the new coordinates
t0 e 2t°
Ou = a+ o’ O = a+ 2
which are time dependent. The ow in the new coordinates meets = (' ) "gand
reads with ¢, = ' ((¢}; ;1) as
1 ( (+1Q)
0= ()= S de T+ e T+ e e 1Y)
1, 1. 2. _ el (+td) 0 0 0 0
= (GE)= 5= agle "= e "t)+de o+ Ze '3)

0= (9= +12:
S S

(4.20)
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We have to verify that

@'+vev va; = @@pg?h (4.21)
@’+vev vaji = @@/’ (4.22)
is met with
vi=@ ! V2= @ ° S A R Ve Ve

=0 =0
The pressure function in the new coordinates is given as
262 °((g1)? + ()% *t°)
21+ ?)

p:

and therefore
@pgH= *g; @pyg?= ¢
follows. The expressions for the velocities read as

g oo (@Prede?” d)
1+ 2

2 - (@F?+2ge’t+q)
1+ 2

and it can be veri ed that we have
@lt+v et v@a
@’+v @V v @

and therefore the equations (4.21) and (4.22) hold. The mass balance is ful lled also,
since (4.5) is met with =0 as well as

@'+ @7 =0

OoON OPF

and 2 R.

Remark 4.9 From the transformation (4.20) one easily sees that the trasition functions for
vertical vectors hold because

vV = @' Vv
is met. Therefore, let us stress out again the fact that in Hidean coordinatesq the com-
ponents of the velocities are tangent to the ow lines and measure the velocity of the id
particles. In the coordinates) the vectors tangent to the ow linesv do not measure the
velocity of the uid particles in general and one has to takento account the velocity of the
coordinate system itself to obtain the correct relations is worth mentioning again that only
for a trivial space time connection one hag = v and the importance of this example lies in
the fact to demonstrate the validity of the equations (4.3)rad (4.16) when the metric becomes
time dependent and the space time connection is not triviallhe case where the Christoffel
symbols of the second kind are nonzero can be treated in thensamanner. Of course the
computations are much more extensive then but nothing essainchanges.
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4.2 The Lagrangian Picture

In contrast to the Eulerian picture the Lagrangian approachmakes explicit use of the refer-
ence manifold which is used to identify material points. The Eulerian point of view allows
the interpretation that the con guration and the reference bundle are identical. This per-
ception will be abandoned in the Lagrangian formulation, wh ich means that the equations
of motions are expressed in material quantities. This can beachieved by a special trans-
formation, the Piola transformation which will be discussed in the sequel. The reference
bundle R!B is introduced with coordinates (t°; X ') for R. The con guration bundle
Q!B will be extended to the bundle G 'R , with

G=Q &R

and coordinates (t% X '; q ) for G.: A motion in the Lagrangian settingisamap : R!C .
with _
q — tO’ X |
Furthermore, we introduce a vertical metric
G=G;@dx' Idt% (dx! Ldt%; 1, G 2C(R)

and a volume form

q — — .
VOL = jdet(Gj)j(dX*  3dt®)~::ina(dX"  §dt%; 4 Gy 2CH(R):

Remark 4.10 The choice of a coordinate system apparently leads to a metnd a volume
form on the bres of R. The connection coef cients; have computational reasons and their
appearance will be discussed thereinafter.

For simplicity we only discuss the casedim(Q) = dim( R). The tangent map of
RIC

TO + TRIT ()
T() = dt® (@+V,@+dX' (@+F @)

involves the well known quantity of the deformation gradient F;, = @ : Care must be
taken sinceV, = @ does not correspond to the material velocity due to similar argu-
ments as presented in section 3.2 Consequently, the velocity of a material point is de ned
by

V =V, o = @ 0 (4.23)

and it can be seen thatV is a material quantity.

Remark 4.11 From the equation (4.23) it is seen that the de nition of the elocity cor-
responds to the one used for point mechanics in section 3.2hisTis obvious since in the
Lagrangian description one is interested in the evolutiorf a xed distinguished mass point
selected from the continuum.
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If the map is invertible, the vertical eld v:Q!V (Q)
vV@=V La= v, o, @

can be constructed. With the help of the map : R!C . we can pull back the form vol

to
VOL= ( vol)

where  is the mass density in the reference con guration meeting
!

P
jdet(g )]

n = TG det[F; ]: (4.24)

The Figure (4.2) illustrates the constructions concerning the Lagrangian approach.

Continuum

Fibre of R

Fibres of Q

\

B

Figure 4.2: The Con guration Bundle in the Lagrangian Picture

Remark 4.12 Let us consider the two dimensional case with

q_——
jdet(g )j(dg'  gdt%) "~ (gt 5dt”)

vol
q

jdet(g )i(da"~ d?  §dt°~ def  dgtA 3dt”)
and

q1= 1(X 1;X2;t0) ; q2= 2(X 1;X2;t0) .
Consequently we obtain

dql — @1 ldxl+ @2 ldx2+ @ 1dt0

dq2 @1 2dxl+ @2 2dx2+ @ ZdtO
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and
q__
(vol) = jdet(@ )j (@, ‘@, > @, ‘@, H)dX'~ dx?
H@, (@°* %) @ (@' gHdxX'~dt°
H@, (@ % §) @, (@' gHdx?~dt

Furthermore, we can write

p T~ 1 .7 .~
jdet(g )j
vol) = S det[F. VOL
(vol) pm [F; ]
with q
VOL = jdet(G )j(dXx? édto) A (dX 2 gdto)
and
1 _ VZ@2 1 Vl@2 2
0 det[F; ]
2 — V2@1 1+Vl@1 2.
0 det[F; ] '

It is worth mentioning that the reference bundle is used to bkmark material points at a
xed time and therefore the connection coef cients)) are not used in calculations. They only
appear formally due to the presented construction. This adruction can be generalized such
that we have _ ' ' _

i= F'V , FIF, = |
but will not be discussed here lengthy since the coef cientsare dispensable for all further
investigations.

4.2.1 The Piola Transformation

The Piola transformation is an important concept that allows to express spatial quantities
in a material form.

Piola Tensors and Cauchy Green Tensor

Let us consider the Cauchy stress form

= @cvol @ (4.25)

together with the map : R!C , that allows to pull back the form part of (4.25). This
leads to the 1st Piola stress tensor

p= @cvol @=P' @VOL @ (4.26)
with !

" jdet(g ) '
i i 1. i — i
P jdet(T,-)j'f detfF, 1 j'; F'F = |: (4.27)
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Remark 4.13 In order to explain how@ is pulled back along let us consider the map
Xi - Nj q .tO
as well as
X'=@" g +@""t°:
The push forward” of @ yields@! @ "'@which is equivalentto@ ! F'@.

The 2nd Piola stress tensor is given as

S= @wvol @ =S'@VoL @
) idet i
s = JOCUY Npipi ey, | jt
jdet(Gy)j
and in coordinates one has the relation
sl = pi Pl

The Cauchy Green tensor is obtained by pulling back the metc gby the map : R!C ..

By means of _
dg =@ dX'+@ dt°

we obtain
C= (@=(g @ dX'+(@ )t (@ dX' +(@ 0)dt%)

and '
C=(g )@ @ @X'+FV dt% @x'+Fv dt:

From remark 4.12 we nally have
C=Cjdx" Ldt% @x! Ldt9
with
Cj =(9 ) Fi Fy oo
Remark 4.14 We have to introduce a bit more of notation especially for theariational ap-
proach which follows. Since the motion: R!C . is the wanted term, the pull back opera-
tion carried out to obtain the rst Piola tensor P; the second Piola tenso® and the Cauchy

Green tensoC can be accomplished only when the solutionof the problem is known. There-
fore the following quantities are adopted which do not reqre the knowledge of : We have

Pi J - Pi
Sij J 1 Slj
C ' = G

which means thatP' ;S';C; 2 C! (J 1(&)): Then the relation
P' = S'F,

reads
P' =8iq:
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Remark 4.15 In the following the composition with the function resulting from the pull
back is only indicated when necessary, for example when dations appear. The quantities
P;S; and C are treated as described above and, of course, the Christadiymbols and

and all other quantities will be evaluated by plugging in thenotion : This is omitted
sometimes to enhance the readability.

Pull back of the Nijenhuis Differential of the Stress Form

To deal with the stress in the material picture we have to pull back the Nijenhuis differen-
tial of the stress form which was given in section 4.1.2 and for convenience we give here
again the coordinate relation which is
h [
d()= d( @cvol) o  dt®+ dq ™ @cvol @:

The pull back the form part of d ( ) alongthe map is

d()=d (P):
From _
d. @cvol) =d ( @cvol) =d(P' @VOL)
and
o dt%+ dg " @cvol = P! F,odX'+ Vo + o dt® ~@cvoL

the coordinate expression
d (P)= P FodX'+ Vo + , dt° ~@VOL+d(P' @VOL) @ (4.28)

is obtained. Furthermore, from the equation (4.28) one has

d(P)"d°= P F+p—r @ jdelGiP’ VOLAd® @
jdet(Gy)j

as well as ' _ '
d (P)rdt°= @' P [ P F vOoL dt® @ (4.29)

where we used the equation (2.13) and |, denote the Christoffel symbols with respect to
the metric G:
Material Covariant Derivatives

Let us inspect how the covariant derivatives(3:15) and (3:16) can be pulled back along the
map : R!C .. Therefore the notation

r(w)= ro(w) (4.30)
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and
ro (V)= r (1) (4.31)

will be used. In coordinates we obtain for the relation (4.30)
r(w= (@w o W )dt’ + (@w w )(F; dX '+ V, dt% F@

where the right hand side can be rewritten as

@w ) ot Vo w o dt’+(@w ) Fow)dX'  F'@ (4.32)
and for the relation (4.31)

r ()= (@ o ! )dt’ + (@! L )(F; dX'+ Vv, dt®) F.odX'+ Vv dt°
where the right hand side follows to
@' ) o Vo I dt®  F odx'+V dt° (4.33)

+ @ ) F.!oodXx! F,dX'+ Vv dt°

The Nijenhuis Relation

The next step is to construct a counterpart to the expression(4.10) which can be done in
the following way. We rst analyze the relation

d(Pcg) =d(g P' @VOL)=dq ~P' @VOL+ q d P' @VOL

where the sectiong: Q!'V (Q) is evaluated along the map ; which means that we have
g=(g ) q 0 dt%) : It follows from the equation (4.28) and the expression

" Ser (@ = " P'@voL (@@a ) o +Vo q))dt°
+" Pl@voL (@a ) Fi q)dx’
that
d(Pcg)=d (P)cg+ ™ Scr (g (4.34)
is met. Furthermore, the counterpart to the relation (4.18) in the Lagrangian setting is
given as
N Ser (Veg) Mdt?= " SC:—ZL(@C) A dtf: (4.35)

The details of the derivation are omitted and can be found in the Appendix A.8.3, where
also the rate of the deformation tensor is presented in the maerial form in remark A.2.
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4.2.2 The Mass Balance

The balance of mass, as stated in the section 4.1.1, can alsoebformulated with respect to
material quantities. Therefore, the mass of a continuous region in the Lagrangian descrip-
tion is given as 7

m = rVOL= c (4.36)

S

with c2 R* where S R is a nice domain of integration. The conservation of mass stées
that Z

@ RVOL"dt° =0 (4.37)
S

has to be met and sincesS is arbitrary we conclude that @( P jdet(Gj )j) = 0 holds, where
the detailed computation is given in the Appendix A.8.4.

4.2.3 The Balance of Linear Momentum

The formulation of the equations (4.14) and (4.16) in the mat erial picture requires to
express the acceleration term and the force term with respetto material quantities. This
is easy for the forces since we haveB @ = (b ) @ and for the expression involving
the covariant derivative of the vertical velocity eld ver (v) = @cr (V) holds. In
coordinates

@cr (V)=(@V VvV oo ) Vo \% ) @
is met, where the equation (4.32) was used.

Remark 4.16 We used the expression
r(w)= (@w o W )dt’ + (@w w)(F, dX'+V,dt%) @
which differs from (4.32) by the fact that we did not pull backihe vertical part @.

Again, using the equation (3.25) it follows that

@cr (V) = (@V vV @, 0 Vo \ ) @
= (@V vV @ o) (Mo o )V )@
= (@ (V@ VvV )@

is met, where it is worth mentioning that we have

Only in the case of a trivial space time connection the standad expression follows, because
then we haveV =V, = @ : Finally we end up with
Z Z

@cr (V) RgVOLAdt’= B@ zVOL+d (P) ~dt° (4.38)
S S
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and sinceS is arbitrary it follows
@cr (V) RgVOL~dt°= B @ {VOL+d (P) ~dt°: (4.39)
The right hand side of the equation (4.39) can be expressed as
B r+@' P I P F VOLANdt® @
where the equation (4.29) was used.

Example 4.17 The case of a trivial space time connection follows easilyaagby setting
o = 0. Then, the equations of motion read as

R @Y VV =B +@' P [ P F
with V. =V, = @ which can be found in [Marsden and Hughes, 1994].
Remark 4.18 From remark 4.14 it is clear that we have
@' = dP'
and furthermore
d(P' @VOL) = j*()  du(P' @VOL)

with the horizontal differential dy ; see for example [Giachetta et al., 1997].

4.2.4 The Balance of Energy

To derive an energy relation in the same spirit as in section 41.3 we start again with
the equation of motion (4.39) and use the metric as a map g : V(Q) V (Q)!C ! (Q).
Consequently, we obtain

@cr (V)cVeg RVOL A~ dt°= (BcVeg) gVOL+d (P)cVeg ~ dt
and from the relation (4.34) given as
d(Pcg =d (P)cg+ ™ Scr ()
the expression
@cr (V)cVeg RVOL (BcVeg) rVOL ~dt®= d(Pcveg) " Ser (Veg) ~dt°

follows. Using the equation (4.35) we get
@cr (V)cVeg gVOL+ ° Sc% (@C) ~dt°=((BcVceg) gVOL+d(PcVceg))”dt®

which is the analogy to the relation (4.19) in the Eulerian de scription. The next step is to
introduce the stored energy function, see [Marsden and Hugles, 1994]
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Then we have
Z Z Z

1
S@ évaC(g )+ Ee RVOLAdt®= S(Bch;g) r VOL ~ dt® + @(Pchg)"dto:
This comes from the fact that

1
@(E) 7= geEa(@C)= S 3(@c))

and

@cr (V)cVeg= @ %Vch(g )

which is a similar calculation as in the Appendix A.8.2. With the help of the rate of
the deformation tensor whose components are given, as desdped in remark A.2 of the
Appendix A.8.3, as

1
Dy = Eg @V \% FF+ @V \% FF

we have the coordinate expression
Z Z

1 1 )
@ évaC(g )+ Ea gVOL/dL? = Ré@ V Vg +S'D; vOL~dtO:
S S

4.2.5 A Variational Approach

Let us recapitulate the bundle structure which was used in the Lagrangian setting. We
obviously considered the bundleG ! R with coordinates (1% X';q ) for G and (t% X)
for R, which is visualized in the following diagram.

G= Q &R t%Xx'q)

?

? ?

R=— R (t% xh

We investigate only rst order Lagrangians and the variatio nal derivative for this setting
looks in coordinates as '
=@ d@ d@
with
d=@+q@; o=@+ q@:

Remark 4.19 In the following essential use is made of the quantiti€3; S and P instead of
C; S and P: In particular the components of the Cauchy Green tensor aiigen asC; (q; t°) =

69 q (a;0):
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Let us consider the density of the kinetic energy

1
Ex, = Ré(oo 0)9 (@ 0)VOL ~ dt°

with the corresponding kinetic energy function

Ee= o 09 (@& o

and the stored energy function which meets

j
We use the variational principle and compute
q — — q — — q — —
Ei jdet(Gj)j r  Eea Jdet(Gy)j g + g jdet(Gj)jg B =0: (4.40)
The expressions
9 ——: 9 ——: K 9 ———: K
rEe jdet(Gy)j = jdet(Gy)iP*g  q d( jdet(G;)iP" )g
and
9 ——:
rEx jdet(Gy)j =
49—+ 'h i
r Jdet(Gjlig &y @ o (@ 0@, o) o (% 0)
as shown H’l the Appendix A.8.5, consequently lead to _
[
R o @(o ) (@ 9@, G o (% 0) =
1 9 —:
Pk + p————d( jdet(G;)jP* )+ B
O pm k( jdet(Gy )jP" ) R
which can be rewritten using the pullback by as
r@cr (V)= gB +@PX PX F P* L (4.41)
since

itO o o =V o = @ o =V

and this corresponds to the relation (4.39). Therefore, it can be concluded that the equa-
tions of motion q

(L)+ & jdet(Gy)ig B =0
with q

L= g |det(Gj)j(Ex Eea)
are represented as a variational problem in the Lagrangian jcture.
Remark 4.20 This should be compared with section 3.3 where in contrast ko= Ldt° we

are dealing withL = L(dX'~ :::2~ dX") ~ dt% which is obvious, since the independent
quantities are (t% X ):
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4.2.6 The Hamiltonian Structure

Combining the results of section 3.2.5 and 4.2.5 we are able b give a Hamiltonian inter-
pretation of the governing equations of a continuum in the Lagrangian setting. Let us start
to introduce the momentum in the spatial description which c an be given as

P =9 (@ o qudet(Gu)j
= gV Rq jdet(G;j )j : (4.42)
In the material description we obtain
P =1p j'0 q
= (g9 ) @ 0 ° R Jdet(Gy)j

= (g ) Vg jdet(Gy)j;

where the symbol of the momentum P should not be confused with the one of the Piola
tensor. The total energy is the sum of the kinetic and the stored energy function. It is
termed the Hamiltonian and reads as

_1 800
2 " jdet(Gy)]

q___
+ Ee g jdet(Gj)j :

The equations of motion, as given in equation (4.39), can be witten as

@ o = H §*0) q
@P )+ P (@ o) ( H) j'O+ jdet(Gy)i rg B (4.43)

where the balance of mass was used.

Remark 4.21 In the set of equations (4.43) the variational derivativeseaad as

= @

= @ GO,
in addition, a direct computation in coordinates gives

: g p 1
H jt0) = P— | ()
R 1det(Gy)j

= v jt0

where the relation (4.42) was used. Thus the desired resutobtained by
P
@ 0 = p 9

R jdet(Gy)]
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The expression

(H) j'0= @ d@H j')
can be decomposed into
!
. 1 g pp .
H ! = Q;—F—r— !
( H) 0 ol it0

+ @ 4@ Eq g jdet(Gj)i  jr()
From section 3.2.5 we have

! !
1 g pp 1

@;—F——-—= () = P———=0 pp it0)
2 5" jdet(Gy)] r jdet(Gy)j
= vp it
which in material coordinates gives
!
1 g pp 1
——P = VP
“2 Fecy Y
and from section 4.2.5 we have
; 9 —0: 9 ——7: K 49 ——0: K
@ d@ Eq g jdet(Gy)] =  jdet(Gy)jP* g q d( jdet(Gj)jP" )g
Therefore the second equation of (4.43) is
q — — q — —
@P)+P(@ gtV P = jdet(Gy)jP* g G+ d( jdet(Gy)iP* )g
q

+ jdet(Gy)j rg B

where the left hand side is clearly the covariant derivativé the momentum in the Lagrangian
description

@cr (P)

@ + @, ot Vo P (dq 0dt?)
@QP +P@ +PV (dq 0dt% ;

which should be compared with the results of section (3.2.5Then, the equations of motion
follow to

qi
@ +P@ ,+PV = jdet(Gj)jg @P* P Fi \PK + B

which are the counterpart to the relations (4.41).



Chapter 5

Time Variant Hamiltonian Systems

Hamiltonian systems are well known in the literature in the nite dimensional as well
as in the in nite dimensional case in the context with modeli ng and control, see for in-
stance [van der Schaft, 2000, Kugi, 2001, Olver, 1986, Schlzher, 2006]. This chapter
Is devoted to a generalization of these systems for the lumpéd parameter case, such that
they are covariant with respect to the change of the frame of reference. We will use the
same mathematical machinery as in the previous chapters, with means that the covari-
ance is achieved by an adequate formulation of the mathematcal objects with respect to
connections and the appropriate covariant derivatives.

5.1 Geometric Analysis

Let us consider the bundle :E !B where we introduce the coordinates (t% x ) for E and
the coordinate t° for the time manifold B. In order to cope with the situation of a control
system, we additionally need the vector bundle : Z! E with coordinates (t% x ;u® for
Z.

Remark 5.1 Thefactthat :Z ! E isavector bundle has the consequence that the following
bundle morphism is appropriate

9= °%t%; x ="' (t%x); u¥¢= t%x )u

where the bres of the vector bundle are linear spaces and alenoted byU. The case where
Z! E isan af ne bundle will be treated with respect to control thery later on in this chapter.

A connection on the bundle E ! B follows in coordinates as
dt® (@+ ,@); ,2CH(E):
We consider a lumped parameter Hamiltonian control system which is given as

(Xo 0)@=v;@ (5.1)

65
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with
vy = J R @H + Ggu*
andH; G;; J ; R 2C! (E). Furthermore
J =1 ;, R =R 0

is met, which means that the matrix representation of the operator J is skew symmetric
and of the operator R symmetric and positive semi de nite.

Remark 5.2 This special form of the control system (5.1) is consideregince its structure is
invariant with respect to the bundle morphism given in remé&r5.1 except for a time repara-
meterization, but this will be discussed in more detail in sgon 5.1.1.

Some additional comments on the representation(5:1) are necessary. Let us consider
the splitting of the total differential of the Hamiltonian dH. From the relation (2.6) we
immediately have

@Hdt°+ @Hdx = @H dx odt® + @H+ ,@H dt°:

Since the eld (X, o) @ is a section of ( §) V(E) we have the interpretation that the
mapsJ and R can be expressed as

JR:V(E)!V (B

with
J=J @ @; R=R @ @:

Remark 5.3 Furthermore
G=Gge* @; Y =spanfefy
is ful lled, where Y is the dual space to the input spadd and meetsY = U.

Let us consider now the right hand side of the relation (5.1). For an input which is
asection :E!Z wehavevy : E!V (E) but control theory has to deal with under-
determined systems and this allows the interpretationvy : Z! (V(E)). Let us consider
amap :E!Z ,suchthatu®= & t%x ;then a solution of the system (5.1) is a section
c:B!E such that we have

10 (Xo o)=c¢ J R @H+Gg *

which is
@ , c= J R @H+Gg % c:

Furthermore, this suggests
@cr (¢)=((J R)cdH +(Gcu) ) c; (5.2)

which is the intrinsic de nition of a Hamiltonian control sy stem.
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5.1.1 Transformations
If we apply a bundle morphism of the form
9= %% = St°+a; x ="' (t%x); u¢= Ht%x )% a2R

to the system (5.1) which means that we do not consider time reparameterization then the
transformed system follows as

Xo =(@ + @ xo) o
as well as
X, =(@ +@ ) %+@ J R @H+G wu* 9
From the relation (2.7) we have

Xo o= J R @H + Ggu® (5.3)

where we used

@H ™M@ =(@H) ™
This points out once again the tensorial transformation properties of J;R; G and , since
we have

(@]
1

@ J @ "
R = @ R @ "
0 @ +@ ,) 5 »

as well as
—_ 1 n& N

It is worth to mention that the system (5.3) is a Hamiltonian s ystem that describes the
evolution of the system (5.1) with respect to a coordinate system that possesses the con-
nection
a° @+ ,@

To be more precise, this means for instance, if the system (8) is modeled in an inertial
systemwith =d t® @ suchthat , =0;then (5.3) will describe the observed evolution
in a Hamiltonian formulation. It is essential to take into ac count the effect of a non trivial
connection, which in this case reads , = @' ” The most general case of a time
variant coordinate transformation of course also includes time reparameterization, such
that additionally t® = °(t%) is met. In this case the system (5.1) has to be identi ed with
the tensor

dt® (%, ) @=dt° v, @ (5.4)
and it is easily seen that a transformationx ="' (t%x ); t°= °(t° preserves this tensor.
The left hand side of (5.4) corresponds to the morphism (2.8) which corroborates the use
of the covariant derivative in the relation (5.2). In the seq uel we only consider the case
t0 = 5t for simplicity.
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5.1.2 Change of the Hamiltonian

The total time change of the Hamiltonian H along the motion cis computed as@(H ¢)
and this can be written as

(doH) c=(@H + x,@H) ¢
which follows to
dH = (@+ ,@H (@H)R (@H)+ @HG u*: (5.5)

The relation (5.5) is well known for the case of , = 0, which corresponds to an inertial
system and the choice ofyg = @HG, shows that the product of input and collocated
output affects the power ows of the system. Furthermore, we have the decomposition of
the relation (5.5) as

doH = W' (H) + vy (H) (5.6)

where wy = @+ @ corresponds to the horizontal derivative induced by the comection
and vy represents a vertical derivative in this sense of course.

Example 5.4 Let us consider the system modeled on the trivial bundles X R! R, with
H; Gg;J ;R 2C!(X)and

Xo= J R @H+ Ggu*:
When we apply a bundle morphism of the form
x ="' (t%x); t°= Jt°
the transformed system reads as

Xo o= J R @H + Ggu:

The horizontal derivative leads to
WiH = @+ ,@ (H ")
= o @H+@H@" "+ ,@H ")
With the formula (A.5) from the Appendix we obtain
wh' H sy @H @H@ @~ "+ ,@H ")
= J(@H) »

which shows that the horizontal derivativavf can be interpreted as an intrinsic time deriva-
tive which takes into account the case where the connectiors not trivial.

Remark 5.5 It is seen from the previous example that the total change offanction along
the motion of the system is, of course, independent of the shio coordinates, but care must
be taken if this result is used for stability arguments as theext section will show.
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5.1.3 Stability Analysis
Stability of nonautonomous systems of the form
Xo=Tf (t%x) (5.7)

is well analyzed in the literature, see for example [H.K. Khalil, 1996] and references
therein. In context with systems of the form

X o)== J R @H+Gg ¢

asin (5.1) care must be taken, because if the connection is not trivial, these equations are
not of the form (5.7) unless the interpretation as a Hamilton ian system is discarded. How-
ever, if we choose coordinates such that in these coordinate the connection s trivial,
then the coordinates will be called adapted to the frame. In these adapted coordinates the
covariant differential corresponds to the classical time derivative and therefore the equi-
librium equation is vy = 0; and the stability analysis can be accomplished as for exammd
described in [H.K. Khalil, 1996].

Remark 5.6 If in the coordinates which are adapted to the frame, which rass that , =0,
the equilibrium does not meek = 0 a transformationx ="' (x ) = (x c¢);ud=

g(u& & can be used which does not necessarily destroy the Hamikonstructure as will
be shown in the forthcoming section 5.2.1.

If the coordinates are not adapted to the frame, the condition vy = 0 expresses the
equilibrium obtained in an adapted set of coordinates formulated in the non inertial frame.
Therefore, if one is interested in a stability analysis with respect to the reference frame care
must be taken which equilibrium is considered, since the sysem

Xo= o+ J R @H+Gg & (5.8)

together with x, = 0; describes the equilibrium condition with respect to the frame of
reference.

Remark 5.7 A special case of this construction arises when the staliitith respect to a

trajectory is in the focus. Roughly speaking the stabilitynalysis of a solution of a system of
ordinary differential equations is treated by examining té stability of the origin of a system

in transformed coordinates.

But from (5.8) it is seen that this interpretation does not al low the exploitation of the
pleasing properties of a Hamiltonian system. A strategy to wercome this problem will be
discussed in section 5.2.2, where the effect of the nontrival frame of reference will be
hidden in a modi ed Hamiltonian such that the classical stability analysis can be used.

Example 5.8 It is easily seen that the equilibrium conditiorx, = O in an inertial system
with trivial connection  is transformed to

X = (@ + @ Xo)g
= @' 8

o -
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Remark 5.9 It is worth mentioning that the horizontal derivative w presented in the pre-
vious section is important for instance when the analysis tiie change of the energy is of
importance. However, one has to be aware that the energy isvays formulated with re-
spect to a frame as described in section 3.2.6 where the kio&nergy of a mass particle was
introduced as

1
E=§9 (% 0) % 0

It is obvious that in these coordinates the energy has a mirum for ¢, = ; whereas if the
coordinates are adapted to the frame we havg = 0; which obviously leads ta, = 0:

5.2 Control Theoretic Aspects

From the control theoretic point of view it is sometimes bene cial to describe a time invari-
ant Hamiltonian system with respect to an equilibrium point or with respect to so-called
error or displacement coordinates.

5.2.1 Equilibrium Points

Let us consider a control system modeled on the trivial bunde E= X R ! R with the
trivial connection =d t° @ that reads as

Xo = J R @H + Ggu® (5.9)

such thatH; Gg; J ; R 2 C!(X) is met. The equilibrium condition for the system
(5.9) follows as
0= J R @H+G, % c: (5.10)

A change of coordinates of the form
x =" (x)= (x ¢c) (5.11)
where we again do not consider time reparameterization, as well as an input transforma-
tion
ud= St 9 (5.12)
lead to a system of the form

Xy = J R @H+ Gg ud¢é+ & w

Remark 5.10 It is worth mentioning that a transformation of the type as inequation (5.12)
has the consequence that the bundfe! E is an af ne one.

For systems that meetd ;R ;Gg 2 R one can take into account the equilibrium
relation (5.10) rather easily in order to obtain

X, = J R @H+ G u*é J R @H c »

= J R @H + Ggu®
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with
H = H x (@H) c
J = J ; R = R ; Gg= Gg&
An application can be found in [Schlacher and Kugi, 2002], where also a more detailed

discussion of this topic is presented.

Remark 5.11 For systems that do not have the pleasing property that ;R ;Gg 2 R is
met, further investigations are necessary.

Remark 5.12 It is worth mentioning at this stage that the transformation(5.11) preserves
the trivial connection, such that we have = d t° @: This is obvious since® = 0: A
transformation with respect to displacement coordinatefi@nges the connection as the next
section will show.

5.2.2 Reference Trajectories

The analysis of the dynamics of a control system with respectto error or so-called dis-
placement coordinates leads to a time variant Hamiltonian system and ts exactly in this
geometric setting as the following shows. Let us consider tle system (5.9) and a bundle
morphism of the form

x =" (t5%x)= (x ) (5.13)

with ¢4 2 C! (B): By a straightforward calculation we obtain the system
Xo+(@cy) o= J R @H + Ggu& (5.14)
which of course corresponds to the system (5.3) with
0= (@) §; J = J ; R = R ; Gg= Gg:
A solution of the partial differential equations
J R @R= (@)

allows a different representation of the system (5.14), since then we obtain a Hamiltonian
system which describes the evolution of the error coordinaesx and reads as

X,= J R @ H+R +Ggu®

which corresponds to a system modeled on a trivial bundle with the connection dt® @:
This is obvious, because the effect of the nontrivial connetion is now hidden in a modi ed
Hamiltonian. Additionally, if the functions ¢, 2 C! (B) correspond to a solution of the
system such that

@cy = J R @H ¢4+ Gg & ¢ (5.15)
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is met, where §: E!Z correspond to the input functions then it may be of interest to
consider an input transformation as well. Therefore, let us examine the transformation

uf="g(u® g (5.16)

with ' § 2 C! (X); where againZ ' E is now understood as an af ne bundle. Then the
system (5.14) reads as

Xo +(@cy) o= J R @H + Gy ugé+ &
and again a solution of the partial differential equation
J R @H= (@) + Gt (5.17)
allows a representation as
Xg= J R @ H+H +Ggu® (5.18)

with Gy =  Gg"% The Hamiltonian system (5.18) describes the evolution of the error

coordinates with respect to a desired solution of the systemc,: The special case, where
the functions G, are constant and &2 C! (B) can be treated easily since then it can be
veri ed that plugging in the equation (5.15) in (5.17) leads to

J R @H = J R @H ¢

which arises in many applications.

5.3 Application

As a simple academic example we consider the magnetically Mtated ball as shown in
Figure 5.1, where the control problem is the demand to track the position of the ball s:
The main focus in this example lies in the fact that we want to show how the time variant
coordinate transformation changes the connection and, addtionally, how this nontrivial
connection can be included in an extended Hamiltonian to obtain the error system in a
Hamiltonian formulation modeled on a bundle whose horizont al derivative is again trivial.
The system can be described in a straightforward fashion on éundle X R! R with a
trivial connection on E= X R, whichreadsas =d t° @: The equations of motion with
the momentum pand the ux can be written as a Hamiltonian system withx = ( ;s;p);
the control input u, which is the input voltage and

2 3 2 3
0 0 O R, 00
J =40 0 15; R =40 0 0°
0 10 0 0d
p2 2
0, = &, H= + Mmggs+

2msg 2L(s)
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Figure 5.1: Magnetic Levitated Ball

with the inductance L(s) = k=(1 s); the mass of the ball mg; the resistance in the
electrical circuit Ry; and the damping, which takes into account eddy currents and pssible
mechanical damping in a rst order approximation for simpli city, with damping constant

d. The theory of atness based control, see for example [Flies et al., 1995] now suggests
to parameterize the system by means of the at output s = s4: By an easy calculation one
nds that

p
d 2k (mg (g + @oSy) + d@sq)
Pa = Mg @sq

and ug = Ug(Sq); which can be calculated rather easily. A bundle morphismE ! E, x =

(x ;19;x= ; s;p ofthe type as in the relations (5.13) and (5.16) leads to non trivial
connection coef cients

@= kp Mg @ooSa + d@Sq
° 2k (Mg (9 + @oSa) + d@sa)

and it is straightforward to verify that a solution of the pde (5.17) is given as

@ @si@ mMg@osi@

H = dHc x @ ™

therefore the error system describing the evolution of X in a Hamiltonian description on
a bundle with trivial connection dt® @ is given with
h i h i
J =3 5 R =R | G=0
and a Hamiltonian H = H "™ + H: The error system can be stabilized for example by
means of the IDA-PBC approach, see [Ortega et al., 2002].

Remark 5.13 This approach allows some exibility in the design, since ihay turn out that
not all the states have to be measured because the controkisignhed in such a way that it does
not depend on them. This can avoid the necessity of the véjomeasurement for instance in
some applications.
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Let us assume there exist constants;; ¢; c3; ¢4 2 R* such that

jSaj <C1; @Sy <Cz; [@oSdj<Cszj; @ooSyj<Ca

and the desired trajectory sq ful lls mg (g+ @oSq) + d@sq > 0: Then the classical IDA-PBC
approach with the desired structure and dissipation matrices

2 3 2 3

h I 0O O h | rq O

Jg =40 0 S; R, =40 rp 05
0 0 d

leads to an asymptotically stable closed loop system. It carbe veri ed after some lengthy
calculation, which will not be presented here in full detail s, that locally W1(x)  Hg
Wy(x) > 0, and dgHgy4 W;3(x); with W3(x) > 0 can be achieved by proper choice of
C1; C; C3;C4 and a proper adjustment of ; ;r 11.r2; > 0; where Hq is a solution of the
matching pde's of the IDA-PBC approach which was chosen as
( + )prop+( + )s + 2 + dryp 2+ s
r2( + ) 6( + )k

ép k(mg+ d @sq + M@oSa)

Hd=

1 2P
+
2( + )k
1

W s( + )+ ( +drp)

1 1
és + pryp (0 + )+§ ( +dry)

Remark 5.14 In order to showW;(x) Hg W,(x) > Olocally a Taylor series expansion of
Hg4 was accomplished and the analysis of the Hessian at the point O; yields the conditions

p_P

2 k(mg+ d@sq+ m@oss)(2m 1) 0
( + )kmrg,
pép k(mg+ d@sq + M@oSg) 2m 1) 0
+ )kmr3,
2m  1)( +dry)’ P3 k(mg+ d @sq + M@oSq)
(+ ymig, (+ )k >0
which are easy to ful ll. The functionsW; ,i = 1; 2 follow from the fact that the time variance
only arises from the trajectorysy and its time derivatives and therefore for a given trajectpr
the boundsg , i =1 :::4 are known and can be used to deriw,; locally. A similar approach

can be used to showlyH 4 W;3(x) but the expressions are very complicated and therefore
only a numeric analysis was enforced with the parameter vas given in the sequel.
5.3.1 Simulation Results

In Figure 5.2 a simulation result is shown for the parameter valuesmg = 0:5, k = 1;
Ri=2,d=0:1and =2: =1:r11=10;r, =4; = 1: After 15 seconds an additive
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disturbance 0:3( (t 15) (t 155)) acts on the input voltage of the system and the
reference trajectory was chosen asy(t°) = 0:5sin(t°): In the Figure 5.2 u corresponds to
the atnessbased control signal, u = u, is the tracking controller which stabilizes the error
system ande = (e;; €;€3) = ( ; S;p):

sd,sm[m]
S =
g o w
g

1 1

0 5 10 15 20 25 30
time in sec

5 I I I I I

0 5 10 15 20 25 30
time in sec
0.4 e, in [Wb] e, in [m] e, in [kgm/s] ]
0.2 i
o of
0.2 B
0.4 i i i i i
0 5 10 15 20 25 30
time in sec

uin [V]

2 | | | | |
0 5 10 15 20 25 30

time in sec

Figure 5.2: Simulation Results



5 Time Variant Hamiltonian Systems 5.4 Hamiltonian Mechanics 76

5.4 Hamiltonian Mechanics

Let us recapitulate the observations of section 3.4, where ve used the same bundle struc-
tures. We have the correspondence that the analogy tothe budle E ! B isnowV (Q) ! B
A simple mechanical control system without dissipation in canonical representation reads
as

@s o = @H (5.19)
@p 9)+p@, = @H+G u (5.20)

with s: B!'Q andp: Q!V (Q). The Hamiltonian corresponds to the total energy
which is L
H = E(lm qg+V

where the tensorm : V(Q) ! V (Q) is the mass metric. The connection that splits the
state bundle is in this case of course not the space-time conaction ; but the Hamilton
connection that splits Tg(V (Q)) and reads as

h=dt® @+ @ (@ )9@ ; (5.21)

where the holonomic base for T (V (Q)) is given as(@; @; @): This is readily observed
from the relations (5.19) and (5.20) by a comparison with (5. 1). The connection coef -
cients of (5.21) can be also derived easily considering a mebanical system modeled on
the trivial bundle Q = M R, with a connection on V (Q) ! B that reads asdt® @. A
change of coordinates of the form

g ="' (t%a)
¢ =g @ = thq:q

leads to the nontrivial connection as stated in (5.21), where we again do not consider time
reparameterization. To see this let us evaluate the equatia (2.7) which leads to

@ "=
and from
@ = Ju @~ +@"@
= 4 @ @ @ )+e" @
¢ @,

we obtain exactly the coef cients of the tensor (5.21).

Remark 5.15 The formula (5.6) should be compared with the expression @) in section
3.4. Due to the previous discussion it is clear that the hodatal part of the derivativew{! (H)
in (5.6) corresponds tovy. 4 (H) in (3.42) since the connection

dt® (@+ @)
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that splits T (E) with respect toE ! B is in mechanics represented as

dt® @+ @ (@ o)a@

and splitsT (V (Q)) with respecttoV (Q) ! B



Appendix l \

Proofs and Detailed Computations

The aim of this part is to present in some detail computationswhich are used in this thesis.

A.1 Frequently used Relations

Many calculations are based on some tricky indices manipuléions and indices shiftings
and some of them which were often used are presented in this setion. Let us start with a
well known formula. Suppose we have two manifolds M and M with coordinates q and
g ; respectively and a diffeomorphism

q="10Q):
From

(@) = " (" (=g

@q = =(@ ) @
the result follows immediately to
=(@ ) @™ : (A.1)
From equation (A.1) it follows by another differentiation t hat we have
@) = e(a@ ) ae" )
0 = (@' )@ +(@ )@ "
@')e = (@ )e e
@' ) o (@) = (e )(e@ )oe" (@ )
(@' ) e" (@) = (@ ) e"
and consequently
@' ) e* (@)= (@ )en : (A.2)

78
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The next calculation is essentially used in the case of time ariant transformations. There-
fore we consider the bundlesQ !B and Q! B with the coordinates (t°; q ) and (1% q );
respectively. We consider the bundle morphism

a ="' q;t’ 5 g =" (q;t)

tO O(tO) ’ tO = AO(tO)

and successively we obtain
6= @ +@ ¢ @ (A3)
and
= @ +@ q @ °: (A.4)
Substituting equation (A.4) in equation (A.3) we get
®» = @ +@ @ +@ q @° @"
b = @ @ +@ @ + G
Therefore the result follows to
@ @
@ =

nO

@ @
@ @

Nan (A.5)

A.2 Transition Functions

A.2.1 The Connection

Let us consider the connection on V(Q) ! Q where we have coordinates(t®; q ;q ) for
V(Q) and the holonomic base(@; @; @) for T (V(Q)) which reads as

=dt® @+ ,@ +dg @+ @ (A-6)
as it appears in section 3.2 and consider a change of coordintes of the form
= °(t%; g =" (@:t); ¢=@ gq:
Successively we obtain
q @ t°+@ q
@' qt®+ @' 9q +@ q

and consequently

@ %t®; dt°= @"dt°
@ d°+@ dq; dqg =@ dg @ @ dt (A7)

dt®
dq
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as well as

@' @°@+@ @+@' 9@

@'! @ @+@' 9@

@ ! @ ,@

@' @ @ (A.8)

is met. Plugging in the expressions (A.7) and (A.8) into (A.6) we obtain
@'t @°@+@ @+@ 1@+@ ,@
+@ dg @ @'d° @ @+@' 1@+@ @
Rearranging the expressions we have
i @+@'@ @+@ @ a+@ , @
W @ @'e+e"@ @@ a+@ )@
+dq @+@" (@' ¢g+@ )@
and nally
@ @+ @@ 9+@'@ , @@ @@ a+@ )@
tdg @+@" (@' a+@ )@
This result can be written
=d t® @+ ,@ +dq @+ @

with

@ @' qg+@ )
= @@ a+@ , @ ):

A.2.2 The Connection

Let us consider the connection onV (Q)!Q where we have coordinates(t®q ;q )
for V (Q) and the holonomic base(@; @; @) for T (V (Q)) which reads as

=dt® @+ ,@ +dg @+ @ (A.9)
as it appears in section 3.2 and consider a change of coordintes of the form

t°= °%t%; g =" (q;t%; w=@" q:
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We obtain successively

t0= @OtO
¢ = @ t°’+@ ¢
¢ = @ (@) ' qt’°+ @ " q@ q +@" q

and consequently
d° = @ °dt°; di°= @ dt°
dg = @ di°+@ dgq: dg =@ dq @ @" dt’ (A.10)
as well as
@' @°0+@ @+@ (@) ' q@
l @°Q+@ @+@" @°@+@" @ 1@
@! @ @+@"q@ @
@ ! @ ,@
@' @ @ (A.11)
is met. Plugging in the expressions (A.10) and (A.11) into (A.9) we obtain
@'t @°@+@ @+@" @°1L@+@" @ 1@+ Q@ ,@
+@ dg @ @'d4° @ @+@"q@ @+@ @
Rearranging the expressions we have
i @+@'@ @+@° @"@°%A+@"@ u+@ , @
# @ @'e+e" @ @ @"wee +e@ )e
+dg @+e" (@" qg@ +o" )@
and nally
@ @+ @'@"@%qe+@’e"@ q@+a@ e , @
i er@ @ @"qe +e@ )@
+dg @+e" (@™ qg@ +o" )@
This result can be written
=dt® @+ ,@ +dg @+ @
with

@ (@"q@ +@ )
0 @"a+@" @" @ 9+@ , @
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A.3 Christoffel Symbols Relation

We want to proof the equation (3.18) and start with

0 (@)= 69 o 649 ¢
0 (@) = 2,
as well as
0 (@) = 2,
_ @(det(g )) .
det(g )

where we used the well known formula
@(detY) =det(Y) tr(Y @Y)
for an invertible matrix Y:Furthermore, from

q . .
@ jdet(g )j= (idet(g )i)

2 jdet(g )]
we have
@(det(g )) _
det(g ) °
and
p . P . :
@ jdet(g )j jdet(g )i _
det(g ) 0
1 @q 1e@ )i
S e =
Pm J g )l 0

where it is worth mentioning that we only consider the case of a Riemannian metric, which
is positive de nite by de nition.

A.4 Computation with Respect to the Momentum

We have to show that
. 1 ) )
g pp j'(s)=s @i p its)a p ')

is met. We have

P9 ( 0pp) = i) p0 (@ +@ @y )G p

i 506 (@9 )0 p
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A simple calculation gives

g 9
(0 )@g )+(@9 )g ) =

|
o

and then

i3 (0 pp) = ') 5P (@0 )y p

i*9 5p (@ Ip

s @ 30 '8 (e i)

which is the desired result.

A.5 Energy
The relation to be shown is that a contraction of
divep jr(s)=r1 (v j*(shcp ji(s) + v j(s)er (p jr(9)
with v = @+ @s @ leads to
g@ voveg ji(s) = vedv ji(s)
The left hand side is rather easy, since

(@+ @s @)cd(m(veveg) j1(s) = (@+ @s @)c@ m(veveg) j(s) dt®
= m@ veveg jh(s)

and for the right hand side we use (3.31) and (3.32) together with p = m(vcg) to obtain
successively

vse 1 (v jr(e)ep+ver (p jl(8) jl(9)= %(QC dv) cp+ve( ¢ dv) j*(s)

and
vsC I (v jr(s)ep+ver  (p jT(s) jr(s)=( vedV  vedV) jr(s)

with
c=(dq odt?)  @:
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A.6 Lagrangian Mechanics

A.6.1 Variational Derivative in Point Mechanics
We want to show the relation
ho j*()cd () = ( L)dt®

treated in section (3.3), where we already introduced the horizontal projection hg: There-
fore we start with

d,_=d Ldi®+ @L({dg gt

d,

dL~ dt®+d(@L)” (dg qdt®) @Ldg, ~ dt°
= @Ldg " dt°+ @Ldg, » dt®+ @ALdt° dg + @@A@Ldg ~ (dg g, dt°)
+@@@Ldg, » (dg qdt° @Ldg, ~ dt°
= @Ldg " dt°+ @A@Ldt°~ dg + @@Ldg ~ (dg  q,dt°)
+@dLdg " (dg  qydt”)
and compute
INOECEDE
We use
()= e+ d@
and consequently we obtain
j*()ed ) = (@LAt® @dLdt® @dLdg + @AL(dg qydt®) @dLdag)
+ ,@AL(dg q,dt?):

Now we apply the horizontal projection
dt®7! dt®; dg 7! qdt®; dg, 7! qdt°
and obtain

ho(j * ( )e(d 1))

(@Ldt°® @@Ldt°® @@L qdt® @@L q,dt°)
(@L @dL @@L q @AAL g)dt°
(@L  do@L)dt°

which is the desired result.

A.6.2 Covariant Lagrangian Equations
We start with

L=30 @  o@ o
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and consequently we evaluate
L=dy @dL @L

therefore we obtain successively

@L = 3@ )@ )b I*,8 (@& J*(G o) @)

= 2@ )& )@ o) 9 (@)® o

as well as
@L =g (% 0) -
Now we evaluate

d @L = @@L+ @@L q+ ABAL q

with
@AL = (@I N% o) 9 @,
@dL = (@9 X o) 9 @,
ddL = g

Then this follows to

0 = L
= (@ X% o) 9 @o+t((@9 N o) 9 @ )+t g Gy
2@ )& )@ 99 (@)% o)

From section 3.2 we have the relation

@ = (@4, @y (@9 )

and consequently we obtain
0 = ( (@ o9 (@ o9 (@9 ) (% 0) 9 @,
+(@9 )% o) 9 @ o)+ g Gy
@)@ )b ) (@b o)

Using the inverse of the metric we have

0= (@) o 0 (@9 (@ o 0"'(@) oy o) @
+3' (@9 )% Db @ oG+ Gy

0" 3@ Mo )& 0)*'Y (@)% o)
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and

0= @, @, (@)np o
0" 3@ )b )&% o)+ 9'(@9 N )& o)

This nally leads to

0= @0 @0 (@& o 0'3@ )% ol o
£207(@9 N oG o)+ 50" (@3 Nb  o)& o
and
0= @ @) @ @& o
+50" (@ +@3 @3 )  oNBH o)

The relation

2 = g (@ +@ @)

then gives the desired result

0 = gy @y @@ (@ () 0) (% 0)(% 0)
= O Oo( o) (@ o) 0) (% 0)(% 0)

A.7 Hamiltonian Mechanics

A.7.1 Splittings - The Autonomous Case
We want to show the relation (3.42)
Vi (Hdt%) = vy (H)dt®

and we start with
Vi (H dt®) = d( vy cH dt®) + vy cd(H dt°) ;

where we used Cartan's magic formula, see [Frankel, 2nd ed. P04], which immediately

gives
vi (Hdt® =d(H) + vyc(dH ~ dt°)

with the relation (3.38) which was given as
Vu =@+t @H+p ()@ @H+p ()@:
Consequently we derive

vy (Hdt®) = @Hdt°+ @Hdg + @Hdp + vuc(@Hdg ~ dt°+ @Hdp ~ dt?)
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and from

vac(@Hdg ~ dt°+ @Hdp ~dt®) = @Hdg @Hdp
+@H@MH+p ,)dt® @H@H +p ,)dt°

it follows that the relation
Vy(Hdt)= @H+ @H@H+p ,) @H@H+p ,) dt°

is met. This simpli es to

Vi (H dt°) @H+@H@(p ,) @H@(P ,) d

@H+@H , p@H@ , dt’

and this is
vi(Hdt) = @+ @ p@ @ (H)dt®= viyu(H)dt®

which completes the proof.

A.7.2 Splittings - The Case of Inputs

Let us consider the case of the extended Hamiltonian
H=Ho Hu; HgH 2C'(V(Q)
with the input functions u 2 C! (B) and we want to show that
Vi (Hodt®) = (Vi1 (Ho) + Vi,v(H-)u') dt®
is met. From the same considerations as above we successiyehave
Vi (Hodt®%) = @Hodt® + @Hodg + @Hoedp + Vi c(@Hodg ~ dt® + @Hedp ~ dt°)

and the expression
Vh C(@Hodg ~ dt®+ @Hodp » dt)

can be rewritten as
@Hodg @Hedp + @He@(Hy Hu +p ()dt® @H@He Hu +p ,)dt°

with
vy = @+ @Ho Hu+p )@ @MHo Hu +p )@:
Consequently we have

Vi (Hodt®) = @Ho+ @Ho@(Ho H U +p ) @Ho@Ho Hu +p ) dt°
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which gives

Vi (Hodt®) = @Ho+ @Ho@( Hu +p ) @He@( Hu +p ) dt®:

Finally we obtain

Vi (Hodt%) = @Ho+ ,@Ho p @Ho@ ,+ @H,@H @Ho@H u dt°:

Since
Vi.y = @QH@ @H®@
= @Hp Hu)@ @Ho Hu)@
we have
VH;V(H ) = @(Ho H u )@H @(Ho Hu )@H
= @H@H @H @H u @H,@H + @H @H u
= @H@H @H@H + @QH @H @H @H u
and
Vh.v(H )u = @H @H @H@H u + @H @H @H @H uwu
Vuv(H)u = @Ho@H @Ho@H u

and therefore the nal result follows to

VH (Hodto) = (VH;H(HO) + VH;V(H )U )dto .

A.8 Continuum Mechanics

A.8.1 Mass Balance Eulerian Picture

We consider the eld

V=@+v @
and compute
v (vol ~ dt?) :
The following abbreviation will simplify the calculation. We use the volume form

q___
vol~» dt® =  jdet(g )jdgt” ::” dg" ~ dt®

and de ne
vol® =dgt” A dgt A dt®
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consequently we use q

vol~ dt°= jdet(g )jvol°:

Successively we obtain

q — q ——
@ jdet(g )j+v @ jdet(g )j vol°
q___
+ jdet(g )jd( @+ v @ cvol®)

q —— q—— q__

@ jdet(g )j+v @ jdet(g )j vol°+ jdet(g )jdv ~ @cvol®

9 ——: 9 ——: 0
@ jdet(g )))+ @ v jdet(g )j vol

v (vol ~ dt)

q — — q — —
v (volrdt®) = @ jdet(g )j)+ @ v jdet(g )j vol°

and nally the result follows to
v (vol ~ dt®) =div(v ) vol” dt°
with q q

dv(v)= p——— @ jdet(g )i+ @(v jdet(g )j)
jdet(g )

A.8.2 Energy Principles

This part gives coordinate proofs of the relations
N 0_- A 1 0
cr (vecg) Ndtt = c §V (g0 ~Mdt (A.12)

and 1
ver (V) cveg=v Evcvcg = v (&) : (A.13)

We start with the proof of relation (A.12) and observe that th e left hand side can be
rewritten as
Noer (veg) Adt°= " cr (v)eg A dt®

with the help of the relation (3.26). This yields

N

"oo(@ o v)dt® @cg " dt°

+% o(@v v)dg @)cg * dt°

A @cvol  @c((@v v)dg)g dg ~ dt°
g (@v v )vol ~ dt®:

cr (v)eg ~ dt°®
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Next we inspect the right side of the equation (A.12) and compute

v(g = v(g )dg 0dt®  (dg 0dt?)
+g v (dg Hdt% (dg  Ldt%+(dg  Ldt°) v (dg = Hdt%
with
V=@+tv@
and

V(g LAt = vec d ndt® +d vedg  Ldt9)
Ve @ ,dg ~dt® +d(v 0)
@ o,dg Vv @ ,dt°+d(v 0)

= @v o) V@, d°+ @v dq

we end up with
v(g = @ +v@g (dg odt° (dg  ,dt?)
tg @V ) v@, d’+@ dg (dg  odt)
+g (dg  Ldt) @V ) v@, dt’+@vdg

Now we use equation (3.24) and derive

v(g = @ ,9 @ o9 +(v 0@g (dq 0dt%)  (dg 0dit?)
+9 @(v ) V@, dt® + @v dq" (dg odto)
+g (dg 0, dt% @(v ) V@, dt°+ @v dq

From
1 0 1 0
C §V (g ~Ndt° = > @cvol @c( @ 49 @ .9 )dg dg ~dt
+% @wvol @c (v )@y dq dgq * dt°
+% @cvol @c g @v +g @v dgq dg ~ dt°

we derive

1

Noc %v (g ~dt°= 5 (v )@y +g @v +g- @v vol”dt®:

With the equation (3.17) which reads as

(@g-)= g~ g
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the result follows to
e %v(g) Adt®=g T @v . v vol” dt?;
where it is worth mentioning that we have
V =V 0
and this proves the relation (A.12).
Remark A.1 The tensord which meets
dn dt® = %v (g) ~ dt°
which in coordinates gives

dn dt® = % g @ v +g- @/ v dg dg ~dt°

is called the rate of the deformation and has the components

d = % g O@v ‘v +g @v Y,

Therefore we conclude that we have

1
e Ev(g) Adt®= d vol~dt?:

Let us now proceed with the equation (A.13). The left hand side in coordinates gives

v cr (v) cveg

(@v o V)tV (@Qv v)vg
= @ +tvO@v (@ yv VV)Vvg

where essential use of the relation (3.25)
0o =(@ ) 0
was made. The right hand side of the equation (A.13) is more cmucial and we have
v %vcvcg = @(%vv g )+v @(%vv g )
which leads to

1 1 1 1
v pveveg = é(@V)vg +§(@V)vg +§VV(@9)

1 1 1 .
+§(V @v )v g +§(V @v )vg +§VVV (@g ) :
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The relations (3.17)
(@)= g g
and (3.24)
@ = (@ (g (@ o9 (@3 ) ,

are again used and we successively obtain

1 1
v Svoveg = (@v)vg +§VV(@09 @, (@9 ) o)
+(v @v )vg +%vvv(g g )

and this this is

v %vcvcg = (@v)vg VvV @ 49 %VV(@Q)O
+(v @v )vg VVVJg

Again using (3.17) we end up with

1 "
v oZvoveg = (@v)vg @9 vV FVV (g ) o

+(v @v)vg VvV VvV (g )
and nally

1
\Y; Evcvcg = Qv vVv@,+rtv@v vyv Vg

this proofs that

1
v cr (v)eveg= v Evcvcg

is met.

A.8.3 Piola Transformation Relations

In the following we show a relation involving the 2nd Piola te nsor and the Cauchy Green

tensor discussed in section (4.2.1). The expression to be sbwn is
1
N Scr (Veg) Mdt®= " Scé (@C) ~dt°:

We start with
N Ser (Veg) M dt°= " Scr (V)eg ~ dt°

and obtain

N Ser (V)eg A dt®

ST(@\V ) F, vV )g F VOL~ dt%:

N si@voL (@(V) FV)dx' g F ~adt°
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The next step is to consider
@C) = @ (@ ) FF (@X' dt® @x! dt9
g FF @ odt® (@x!  hdt®) g FF @ hdx' (dt% dt

since _ _ _
@(dX' odt9 = @ pLdt°

and therefore

1 i 1 : :

A SCE(@C) ~dt®= " S @VvoL @cé@ (9 ) FF dx' dx! ~dt°:
Let us inspect the expression
@ (g ) Fi F
which follows to
(@ +Vo@y )FiFj+g (@ )F +9g FF @

and therefore we obtain

@ (9 ) FF =(@ +Vo@ )F F +g @, F +g9 F @Y :

The relations (3.17)
(@ )= ¢ g
and (3.24)
@ = (@ 9 (@ ,)9 (@3 ) o

are used to get
@ (@ )FKRF = (@9 (@09 *(Mo o 9 g Fi F
tg @oF +g F @Y :

Additionally we obtain

@ (@9 )FRF = (@og (@49 +V g g F F
+g @, F +g F @Y :
= g (QV )F +g FF@V V ¢ tg Fi F
and
@ (g ) FRFp =9 (@) Vg FFFp+ 9 @ Vg FoFoe

Since S is symmetric we nally have
1
N SCE (@C) ~dt® =

" sl@voL @ @ VF g F dXx' dx ~dt
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and
A SC%(@C) ~ndt®= ST @v VF g F VOL~dt°

which proves the assertion.

Remark A.2 The tensorD which meets
1
DA dt’= >(@c)” dt®
and in coordinates this gives
1 .
Drdt’=5 9 @ VvV F F+g @ VvV F F d

is called the rate of the deformation and has the components

1
Dj=59 @ V F F+@ VvV FF

A.8.4 Mass Balance Lagrangian Picture

We want to show that Z

@ gVOL~dt° =0
S

implies the condition q
@( r det(G;)j) =0
and therefore we start with

q___
@ R jdet(Gy)jdX A A dX ™A dt®

q_
@ r jdet(Gy)jvOL®

@ rVOL~ dt°

We obtain
q — q

dxi ~ dt°

@ RVOL dt°® =@  jdet(Gj)j VOL%’+ 5 jdet(G;)j(@cd(VOL °)+d( @cVOL®))
J )

which follows to

q
@ RVOL"Mdt° =@  jdet(G;)j VOL®:
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A.8.5 Variational Principles

We rst want to prove the relation concerning the stored ener gy function

q — — q — — q — —
rEe jdet(Gy)] = jdet(G; )jP* g g d( jdet(Gy)jP* )g
with @
2r—FEg=8'
ij
and
Ci=q9 q:
Consequently
q — — q

rEe jdet(Gj)j = @ d@ ( grEe jdet(Gj)j)

and the right hand side gives
9 —— @ 9 —— @
jdet(G;j)j g aEel@Cij o jdet(Gj)j g EUEeI@Cij
as well as

q q

jdet(Gij)j:—ZLs"‘ @Gg q) d % jdet(Gy )jS' @(qg9 q)

This follows to
q —— — q

) ) 1 .
rEe Jdet(Gj)] = jdet(G; )JESIJ qq @g
19— "
dk > jdet(Gy)j(S"g q + S*qg )
and
9 — 9 ——1 9 — Ki
rEe jdet(Gj)j = jdet(G; )JES” qq@g  d( jdet(G;)jS9g q):
The relations (3.17) which read as
(@g )= g g
lead to
q— q —— q

rEe jdet(Gy)j =  jdet(Gj)jS'aq(g ) d( jdet(Gy)iSYg q)
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and
9 ——: 9 —
rEe jdet(Gy)j = jdet(Gy)jP’ qg
q — — q — —
de(  jdet(G;)jP* )g jdet(G; )jiP* @(g )q :

Finally we obtain

9 ——: 9——— 9 ——F: K

rEe jdet(Gj)j = jdet(G;)jP' qg di(  jdet(Gy)jP* )g
q_
jdet(Gy)iP* (@ +9  )a

and

9 ——: 9 ——0: 9 ——:

rEe jdet(Gy)j =  jdet(Gy)iP*g g d( jdet(Gy)iP“)g
which is the desired relation.
The expression involving the kinetic energy function
9 ——:
rEk jdet(Gj)] =
49—+ 'h i
r Jdet(Gjlig o @ o (% 0) @ G o (% 0)

can be shown rather easily based on the calculations given irthe sections A.6.2 and A.8.4

of the Appendix, since we have

1 qf
Ré(% )9 (@ o) det(Gy)j =

q

1 VN
@ d@ RE(OO 09 (% o) Jdet(Gj)j
and the observation that
q - -
@ R jdet(Gj)j =0
qf qf
do g Jjdet(Gj)] = @  jdet(Gy)j =0

where the second equation follows from the mass balance in tle Lagrangian description.



Appendix B

Afterword

This work has been done in the context of a DOC scholarship oftie Austrian Academy of
Sciences (OEAW).
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