JAU JOHANNES KEPLER UNIVERSITÄT LINZ

PHYSIKKOLLOQUIUM

Fachbereich für Physik

Im Rahmen des Physikkolloquiums spricht

Dr. Maksym Yarema

ETH Zürich, Institute for Electronics, Department of Information Technology and Electrical Engineering

über

Liquid Borne Phase Change Nanomaterials

Abstract:

The demand for data storage and data processing is increasing exponentially and is projected to reach approximately 175 zettabytes (1.75×10¹1 terabytes) in 2025. The rapid development of deep learning neural networks and large language models in everyday applications fuels the superexponential demand for data processing, driving the need for alternative memory solutions. Phase-change memory (PCM) is among the most mature emerging memory technologies, offering faster read and write times, non-volatility at elevated temperatures, and multibit analog-type data storage potential. In this presentation, we leverage the benefits of liquid-based synthesis to access phase-change memory materials in the form of colloidally-stable nanoparticles or molecular inks. We report several approaches, which enable all phase change materials to be prepared in the liquid. For example, our amide-promoted synthesis unlocks a wide library of ternary M-Ge-Te colloids (where M is e.g., Sn, Bi, Pb, Co, Ag, Sb or Cu). [1,2] Nanoscale amalgamation reaction allows reaching the nonequilibrium Sb-rich bimetallic compositions. [3] Finally, thiol-amide co-solvent method brings ternary M-Sb-Te materials to the liquid phase, including classical Ge-Sb-Te and highly performing Sc-Sb-Te phase-change materials. [4] Our solution-based engineering approach offers a generalizable platform for materials development and their rational choice through the studies of structure and dynamics of liquid-borne phase change nanomaterials. [5] For phase-change applications, we enable simpler fabrication and geometrical adaptability of liquid-phase processing, including the infilling of nanoscale vias and the deposition of films on flexible substrates. [1,4] Finally, we demonstrate cyclable and non-volatile prototype memory devices, achieving performance indicators, such as resistance contrast and low reset energy, on par with state-of-the-art sputtered PCM devices. [4]

Datum: Mi, 22.11.2023 Zeit: 15:30 Uhr Ort: HS 8

References:

- [1] D. Kumaar et al., and M. Yarema*. Colloidal Ternary Telluride Quantum Dots for Tunable Phase Change Optics in the Visible and Near-Infrared. ACS Nano 2023, 17, 6985-6997.
- [2] O. Yarema et al., and M. Yarema*. Colloidal Phase-Change Materials: Synthesis of Monodisperse GeTe Nanoparticles and Quantification of Their Size-Dependent Crystallization. Chem. Mater. 2018, 30, 6134-6143.
- [3] J. Clarysse et al., and M. Yarema*. Size- and Composition-Controlled Intermetallic Nanocrystals via Amalgamation Seeded Growth. Sci. Adv. 2021, 7, eabg1934.
- [4] F. M. Schenk et al., and M. Yarema*. Phase-Change Memory from Molecular Tellurides (submitted).
- [5] S. Wintersteller et al., and M. Yarema*. Unravelling the Amorphous Structure, Nanoscale Effects, and Crystallization Mechanism of GeTe Phase Change Memory Material. Nature Communications 2023 (under revisions, preprint available).

Datum: Mi, 22.11.2023 Zeit: 15:30 Uhr Ort: HS 8