

Möglichkeiten der Digitalisierung in der Bauteilauslegung

Zoltan Major, Institute of Polymer Product Engineering

LIT Factory & Smart Systems Engineering

Smart Processing with Digitization

Smart Composite Extrusion; Company LEISTRITZ

Smart Composite Injection Molding; Company ENGEL

Smart Recycling; Company EREMA

Smart System Engineering

Design of smart polymeric components for industrial applications (industrial components)

- Automotive parts
- Aircraft components

Locomotion Engineering & Personalized Technologies Lab

Design of smart polymeric components for medical and personal assistance systems

- Medical support systems
- Bicycle concepts, micromobility

LIT Factory IPPE LABS

Experimental Mechanics

Additive Manufacturing

LIT Factory

Modeling and Simulation

Design, CAD and PDM/PLM/LCA

S Û 600 and qe C Reiter 60 .ocomotion (Martin alized Person

LIT Factory: Smart System Engineering

The main activity of the Smart System Engineering Lab (SSEL) is the adaptation and implementation of various modules of the methodology "Integrated Computational Materials Engineering (ICME)".

> Methodology:

- > Design WITH materials" combined "design THE materials"
- Engineering molecular dynamics processing micromechanics macroscopic component performance and life time/reliability assessment simulation
- These modules involve both physical model based and data science based modeling and simulations tools for descriptive, predictive and perspective simulation models.
- To support the advance of sustainable development by proper digitization, quantitative life cycle analysis (LCA) models have been elaborated of in various software tools and are combined with above engineering tools within a comprehensive product life cycle management (PLM) software environment.

Smart System Engineering

"Integrated Computational Materials Engineering (ICME)".

LIT Factory: Smart System Engineering

The SSEL group is supported by various software partners.

Main Goal: Implementation and support the industrial application of a full-scale Integrated Computational Materials Engineering (ICME) methodology

Software Licences

- Siemens Austria (A), LIT Factory partner, in-kind contribution, various industry licenses for the LITFactory partners (see next slide)
- hbk Prenscia (D, A) LIT Factory partner, in-kind contribution, nCode (fatigue and life time analysis) and ReliaSoft (reliability analysis) licences
- PRIMEaerostructures (A), Abaqus, special agreement for LIT Factory industry licences
- eXstream engineering (Hexagon Group, B), interested for partnership; Digimat, special agreement for LIT Factory industry licences
- CoreTech (Taiwan), Moldex3D research licences, individual agreement for industry use
- J-SOL (J, Tokyo), research licences of J-OCTA (molecular dynamics) and J-Composites (forming and compression molding), individual agreement for research

LIT Factory: Smart System Engineering

INTEGRATED COMPUTATIONAL MATERIALS ENGINEERING (ICME)

> Virtual realization of the structure-property-performance relationships

> Structure prediction by process simulations – basic method

Digital Continuity

> Structure prediction by experimental techniques – hybrid method

INTEGRATIVE SIMULATION MATERIAL, PROCESS, MICROSTRUCTURE- AND COMPONENT

Design of Composite Components

SFRP Injection Molding Workflow – Simcenter 3D integration

Automatically map

Microstructural Material Microstructural

Models

Toolkit

Parameters

SIEMENS

Hultiscale Solve Microstructural Results

Defects Output Request 😰 Dehomogenization

True Multiscale

Moldex3D

(Study of Disha Tupe and Erik Fabian

Structural mesh and loading

condition

Simcenter3D

Multi-Scale Simulation Simcenter - Multimechanics

Design of Composite Components

Draping and forming simulation studies

Increasing geometrical complexity (number, grade and sharpness of curvatures

Software tool: Siemens NX, Simcenter3D and FiberSim (Siemens Industry Software GmbH, Linz) A. Kapshammer, MSc, 2021

Aircraft component

Forming of UD Thermoplastic Composites

Testing and Simulation Methodology

PICTURE FRAME TESTS in-plane deformation

LIT Factory

Forming Simulation

Mesh

Tools: 2D shell elements, triangular and square, curvature dependent element size,

1.4 mm geometry offset for upper tool

Blank: 2D shell elements, 2 mm square, uniform distributed

-Lower Tool fixed

-Upper Tool 40 mm motion in -Z (1.4 mm gap), speed 50 mm/s (*x 50*) -Clamps + Springs

Cooperation with J-SOL (J-Composites)

Software tool: J-Composites (J-Sol, Tokyo, J and LS-Dyna, Dynamore)

Materials

-Tools: rigid body

-Blank: Shell-Membrane

layered (overall 24 layer)

MSc Thesis of Daniel Laresser, IPPE JKU, 2019; CHASE Project 1.3 (Miron, Laresser, Kapshammer), Companies: FACC, Greiner, Borealis

Boundaries

Failure Modeling of Laminates

Conventional and Advanced Laminate Models

Hebertinger, 2019; G. Seebach, 2020; SimCenter3D

Modeling of Cellular Structures

CT-based Foam Models: Hybrid Integrated Models

size in x-direction

Hössinger-Kalteis, PhD IPPE JKU, 2020, Chase 2.3, Company: Borealis

Structural Analysis of Sandwich Components Conventional and Micromechanics Models Material Modeling

Components

A. Kapshammer, IPPE JKU; Chase 1.3, Company: Neveon

Data Based Modeling and Simulation

AI for Material Development

Data Generation

Data Evaluation

Property Prediction

Martin Reiter, Florian Kiehas, cooperation with Borealis

Data Based Modeling and Simulation

AI for Process and Component Development

Internal LITFactory Chase Cooperation (Kobler, Seebach),

MODELING & SIMULATION METHODOLOGY

SIMULATION WORKFLOWS

- SIEMENS ROUTE
- ROUTE WITH OTHER SOFTWARE TOOLS

FUNCTIONALIZATION OF COMPONENTS FOR

INDIVIDUAL AND SMALL BATCH AND

Polymer Injection Moulding and Process Automation

LARGE BATCH PRODUCTION

Robot Assisted Additive Manufacturing

Unique components

T Factory

Functionalization of injection molded or tape layed parts

> **OLAF** is a flexible 6-axis 3D-printing system with interchangeable print heads and a build volume of 3 m x 1 m x 1.5 m. > OLAF is based on a KUKA industrial robot Large dimensions > Possibility of non-planar printing (curved layers) due to the additional rotational axis Printing of continuous fibers for production of optimized reinforcement structures Combination of printing with filament, granulate and continuous fibers Printing of cellular structures

For more info please visit the Locomotion Lab

Design of Components

ALTERNATIVE AND COMPETITIVE PROCESSING -1: DISCONTINUOUS FIBERS

Design of Components

ALTERNATIVE AND COMPETITIVE PROCESSING -2: CONTINUOUS FIBERS

Functionalization: 3D-printed (FFF) honeycomb in thermoformed part

Additive Manufacturing

Thermoplastic matrix

Novel production

Design of Components

Design "with" Material

Design "the" Material

(Selective Compliance Assembly Robot Arm) SCARA 3D printed robot (PolyJet+SLS) (DiMap H2020, 2017-2020)

Hössinger-Kalteis, 2021; G. Dämmer, PhD, 2021

DIGITIZATION – AUTOMATIZED AND INDIVIDUALIZED SMALL BATCH ADDITIVE MANUFACTURING

Martin Reiter, Sebastian Lämmermann, IPPE JKU

Implementation in Software Tool (Umberto)

Stelzer, 2022

Company partner: ipoint (Vienna, A)

Danke für die Aufmerksamkeit

Kontakt: Prof. Zoltan Major zoltan.major@jku.at +43 732 2468 6591