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We used a neural network as a universal function approximator to predict

the complex time dependence of specific parameters of the consolidation

process. It was possible to obtain an accurate and robust model based on a

few process points.

The NN can fundamentally use endpoints only to predict the outcome.

While NN will necessarily pick up systematic inconsistencies or

inaccuracies inherent to the physical model, data-driven models confer the

advantage that they can be corrected by a transfer learning step.

We have investigated several transfer approaches by using the ILSS, and

tape thickness.

The presented workflow permits the prediction of quality parameters

from process settings within seconds, enabling efficient process

optimization and control.

This hybrid approach thus provides a cost-effective and efficient solution for

optimizing the consolidation step of the composite manufacturing chain.
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Fibre-reinforced thermoplastic composites have become increasingly

popular for lightweight applications due to their excellent mechanical

properties and potential for recycling. These composites are based on

unidirectional (UD) tapes, which can be easily processed into complex

shapes using automated manufacturing techniques. An important step in the

manufacturing of components from these tapes is consolidation, which

involves heating and pressing several layers of the tape together to fuse

them into a single piece. The optimization of novel manufacturing

processes in industrial contexts can be challenging due to the time and cost

constraints of experimental approaches. To overcome this challenge,

computational approaches have emerged as a cost-effective and efficient

solution. A typical workflow consists of (a) the replacement of systematic

experimentation by physical modeling, creating artificial data for (b) the

subsequent replacement of computationally expensive physical models by

fast surrogate (non-parametric) models, and (c) the calibration of the
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Exempted Case Number MSE

1 7.57*10-5

2 5.05*10-3

3 1.37*10-2

4 1.75*10-3

Low setting Mid setting High setting Lower Bound Upper Bound
Hot Press Temperature 473.15 K 523.15 K 573.15 K 473.15 K 623.15 K

Hot Press pressure 100000 Pa 300000 Pa 500000 Pa 50000 Pa 800000 Pa

Cold Press Temperature 333.15 K 373.15 K 413.15 K 313.15 K 413.15 K

Cold Press pressure 1000000 Pa 2000000 Pa 3000000 Pa 1000000 Pa 9000000 Pa

Holding Time/Cycle Time 5 s 10 s 15 s 0 s 500 s
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surrogate models by experimental observation. In this study, we use the ground truth generated by a computational fluid dynamic (CFD) model to train a 

surrogate fast neural network (NN) which was subsequently calibrated to experimental data. 
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