Proton transport and proton-coupled transport


Secure, competitive, and sustainable energy production is a major challenge facing human societies. Biomimetic solutions such as the development of new biofuel cells are hampered by our thus far incomplete understanding of proton transfer reactions. The same holds for health threats to humanity: Curing diseases like cancer, obesity, chronic gastritis, gastric and duodenal ulcers, requires to pharmacologically interfere - in their molecular details - with yet unresolved proton transfer reactions.

Here we aim at clarifying the molecular reaction mechanism in the confines of interfacial water layers and proteinaceous cavities with emphasis on arrangement and mobility of proton relay moieties. Achieving this requires an interdisciplinary, multi-level approach comprising cutting edge technologies like second harmonic imaging, single molecule and time resolved fluorescence microscopy and spectroscopy, advanced calculations of proton transfer, bioengineering of membrane channel and transporter containing systems, synthetic design of biomimetic proton channels, solving protein structures and rational drug design.

PROTON will train 15 PhD students, who will acquire a solid state-of-the-art multidisciplinary scientific training in all kinds of proton migration/reaction systems, covering from basic science to industrial applications, thus preparing them to generate new scientific knowledge of the highest impact. In addition, practical training on transferable skills will increase their employability and qualify them for responsible positions in private and public sectors. Cross-disciplinary strategies and close collaboration with industry will enable them to resolve the molecular details of proton driven processes in all kinds of settings - enabling the improvement of biomimetic applications – up to fuel cells - and to identify lead substances which may serve to pharmacologically interfere with proton transport through membrane channels and transporters.



Proton transfer is crucial in numerous biological and chemical processes, e.g. in cellular proton pumps or in hydrogen fuel cells. Even though their empirical study began with the origin of chemistry, many details of the proton transfer mechanism are still unresolved and understanding the way in which confined water mediates proton dynamics remains a fundamental challenge in chemistry and biochemistry. Transmembrane proton gradients are essential to life on earth as they are intricately linked to both photosynthesis and synthesis of adenosine triphosphate (ATP, the energy currency of life). Yet, once protons have crossed the membrane, they do not freely exchange with protons on the receiving site. An energy barrier with the height of ~30 kT opposes their release into the bulk. The mainly entropic nature of the barrier ensures high lateral proton mobility. However, besides being attributed to structured water,,the molecular origin of that barrier remained thus far elusive. Yet, newly developed label-free and charge-sensitive dynamic imaging techniques of lipid membrane hydration, hydration of active protein sites as well as their dipolar relaxation dynamics now offer the possibility to explore the interplay between structural features of the hydration shell and proton migration on the millisecond time scale. Likewise, technically demanding ab-initio molecular dynamics (MD) simulations of protons adjacent to lipid bilayers also promise insight into the molecular proton migration mechanism. By levering on these new methods for (i) visualising proton surface transport as well as (ii) assessing its energetics and combining them with approaches for deciphering the structure of G-protein-coupled receptors (GPCRs) and other proton-dependent membrane protein, the PROTON project will perform ground-breaking work in this field.

Individual Research Projects





Name Dept./Division/Lab Contry Scientist-in-charge
Johannes Keppler University of Linz (JKU) Institute of Biophysics Austria Peter Pohl
Le Centre National de la Recherche Scientifique (CNRS)

Institut Européen des Membranes / Adaptive Supramolecular Nanosystems Team

France Mihail Barboiu
Christian-Albrechts - Universität zu Kiel (CAU)


Department of Pharmaceutical and Medicinal Chemistry
Germany Eric Beitz
Hebrew University of Jerusalem (HUJI) Institute of Chemistry Israel Noam Agmon

Freie Universitaet Berlin (FUB)

Department of Physics Germany

Ana-Nicoleta Bondar

J. Heyrovský Institute of Physical Chemistry of the CAS, v. v. i. (UFCH) Department of Biophysical Chemistry Czech Republic Martin Hof
Universität des Saarlandes (USAAR) Theoretical Biophysics Germany Jochen Hub
University of Oslo (UiO) Centre for Molecular Medicine Norway Norway Hartmut Luecke
University of Veterinary Medicine, Vienna (VMU) Institute of Physiology, Pathophysiology and Biophysics / Department or Biomedical Sciences Austria Elena E. Pohl
Ecole Polytechnique Federale de Lausanne (EPFL) Laboratory for Fundamental BioPhotonics Switzerland Sylvie Roke
Boehringer Ingelheim Pharma GmbH & Co. KG RSG MedChem Germany Herbert Nar
Intana Bioscience GmbH   Germany Stefan Hannus


Partner Organisations

Name Country   Scientist-in-Charge E-Mail
Keysight Technologies GmbH Austria   Ferry Kienberger
COSMOlogic GmbH & Co. KG Germany   Andreas Klamt
Elements SRL Italy   Federico Thei  
Carl Zeiss AG Germany   Klaus Weisshart  
Evercyte GmbH Austria   Johannes Grillari


Name Position Organization Phone E-Mail
Peter Pohl Coordinator of PROTON JKU +43 732 2468 7562
Marijana Saric Project administrator JKU +43 732 2468 7561




First KICK-OFF MEETING: 13.09.2019 - 15.09.2019 in Strobl

First TRAINING EVENT: 12.09.2020 - 14.09.2020 in Strobl & 14.09.2020 - 16.09.2020 in Linz

MIT-TERM EVALUATION/2nd TRAINING SCHOOL: 13.11.2020 - 16.11.2020 in Berlin