Zur JKU Startseite
Institut für Machine Learning
Was ist das?

Institute, Schools und andere Einrichtungen oder Angebote haben einen Webauftritt mit eigenen Inhalten und Menüs.

Um die Navigation zu erleichtern, ist hier erkennbar, wo man sich gerade befindet.

Publikationen 2020

Zeitschriften

Hsa-miR-375/RASD1 signaling may predict local control in early breast cancer Artificial neural networks and pathologists recognize basal cell carcinomas based on different histological patterns Industry-scale application and evaluation of deep learning for drug target prediction Machine learning–based prediction of transfusion What Role Does Hydrological Science Play in the Age of Machine Learning? On failure modes in molecule generation and optimization

Konferenzen

A Deep Learning Architecture for Conservative Dynamical Systems: Application to Rainfall-Runoff Modeling
Author(s): Grey Nearing, Frederik Kratzert, Daniel Klotz, Pieter-Jan Hoedt, Günter Klambauer, Sepp Hochreiter, Hoshin Gupta, Sella Nevo, Yossi Matias
Published:

NeurIPS Workshop: AI for Earth Sciences, Conference Neural Information Processing Systems Foundation (NeurIPS 2020), December 2020

A Machine Learner’s Guide to Streamflow Prediction
Author(s): Martin Gauch, Daniel Klotz, Frederik Kratzert, Grey Nearing, Sepp Hochreiter, Jimmy Lin
Published:

NeurIPS Workshop: AI for Earth Sciences, Conference Neural Information Processing Systems Foundation (NeurIPS 2020), December 2020

Modern Hopfield Networks and Attention for Immune Repertoire Classification
Author(s): Michael Widrich, Bernhard Schäfl, Milena Pavlovic, Hubert Ramsauer, Lukas Gruber, Markus Holzleitner, Johannes Brandstetter, Geir Kjetil Sandve, Victor Greiff, Sepp Hochreiter, Günter Klambauer
Published: Neural Information Processing Systems Foundation (NeurIPS 2020), December 2020
Examining the uncertainty estimation properties of LSTM based rainfall-runoff models
Author(s): Daniel Klotz, Frederik Kratzert, Martin Gauch, Alden Keefe Sampson, Sepp Hochreiter, Grey Stephen Nearing
Published: AGU Fall Meeting 2020, 1-17 December, 2020
LSTM-Based Rainfall–Runoff Modeling at Arbitrary Time Scales
Author(s): Martin Gauch, Frederik Kratzert, Daniel Klotz, Grey Stephen Nearing, Jimmy Lin
Published: AGU Fall Meeting 2020, 1-17 December, 2020
What is the role of hydrological science in the age of machine learning?
Author(s): Grey Stephen Nearing, Frederik Kratzert, Alden Keefe Sampson, Craig Pelissier, Daniel Klotz, Cristina Prieto, Jonathan M Frame, Hoshin Gupta
Published: AGU Fall Meeting 2020, 1-17 December, 2020
Cost Optimization at Early Stages of Design Using Deep Reinforcement Learning
Author(s): Lorenzo Servadei, Jiapeng Zheng, Jose Arjona Medina, Michael Werner, Volkan Esen, Sepp Hochreiter, Wolfgang Ecker, Robert Wille
Published: Workshop on Machine Learning for CAD (MLCAD), 2020
Learning from mistakes: Online updating for deep learning models The performance of LSTM models from basin to continental scales Towards deep learning based flood forecasting for ungauged basins

Publikationen (non-peer-reviewed)

DeepRC: Immune repertoire classification with attention-based deep massive multiple instance learning bioRxiv.org Large-scale ligand-based virtual screening for SARS-CoV-2 inhibitors using deep neural networksarXiv.org
Rainfall-Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory NetworkarXiv.org
Cross-Domain Few-Shot Learning by Representation FusionarXiv.org Uncertainty Estimation with Deep Learning for Rainfall-Runoff Modelling Convergence Proof for Actor-Critic Methods Applied to PPO and RUDDER Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution Hopfield Networks is All You Need Modern Hopfield Networks and Attention for Immune Repertoire Classification