schließen

Ass.-Prof. Dr. Johannes Brandstetter

Curriculum Vitae

Forschungsthemen

  • Deep Learning
  • Deep Reinforcement Learning
  • Few-Shot Learning
  • Natural Language Processing
  • Generative Modeling
  • Physics-inspired and physics-informed machine learning

Ausgewählte Publikationen

2020

[1] Michael Widrich, Bernhard Schäfl, Hubert Ramsauer, Milena Pavlović, Lukas Gruber, Markus Holzleitner, Johannes Brandstetter, Geir Kjetil Sandve, Victor Greiff, Sepp Hochreiter and Günter Klambauer (2020). Modern Hopfield networks and attention for immune repertoire classification. Accepted at 2020 Conference on Advances in Neural Information Processing Systems[PDF]

[2] Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, Victor Greiff, David Kreil, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter (2020). Hopfield networks is all you need. [PDF]

[3] Vihang P Patil, Markus Hofmarcher, Marius-Constantin Dinu, Matthias Dorfer, Patrick M Blies, Johannes Brandstetter, Jose A Arjona-Medina, and Sepp Hochreiter (2020). Align-RUDDER: Learning From Few Demonstrations by Reward Redistribution. [PDF]

[4] Thomas Adler, Johannes Brandstetter, Michael Widrich, Andreas Mayr, David Kreil, Michael Kopp, Günter Klambauer, and Sepp Hochreiter (2020). Cross-Domain Few-Shot Learing by Representation Fusion. [PDF]

2019

[1] Jose Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brandstetter, and Sepp Hochreiter (2019). RUDDER: Return Decomposition for Delayed RewardsAdvances in Neural Information Processing Systems (13566-13577). [PDF]

[2] Thomas Adler, Manuel Erhard, Mario Krenn, Johannes Brandstetter, Johannes Kofler, and Sepp Hochreiter (2019). Quantum Optical Experiments Modeled by Long Short-Term MemoryNeurIPS 2019 Workshop: Machine Learning and the Physical Sciences[PDF]

[3] Frederik Kratzert, Daniel Klotz, Johannes Brandstetter, Pieter-Jan Hoedt, Grey Nearing, and Sepp Hochreiter (2019). Using LSTMs for climate change assessment studies on droughts and floods. NeurIPS 2019 Workshop: Tackling Climate Change with ML[PDF]

[4] Hubert Ramsauer, Johannes Brandstetter, Michael Gillhofer, Bernhard Schäfl, Sepp Hochreiter (2019). A GAN based solver idea for derivative-free optimization problems. NeurIPS 2019 Workshop: Science meets Engineering of Deep Learning.

[5] Michael Gillhofer, Hubert Ramsauer, Johannes Brandstetter, Bernhard Schäfl, Sepp Hochreiter (2019). A GAN based solver of black-box inverse problems. NeurIPS 2019 Workshop: Solving inverse problems with deep networks.

Betreute Masterarbeiten 

  •  Analysis of Integral Probability Metrics for Generative Adversarial Networks, Lukas Gruber (2019)
  •  Image Segmentation of Microplastics via Hyperspectral Imaging, Kristina Duswald, ongoing

Lehre

  • 2018: Exercises in Machine Learning: Supervised Techniques, Lecturer, JKU Linz
  • 2018: Lecture in Numerical and Symbolic Methods for Bioinformatics, Lecturer, JKU Linz
  • 2019: Exercises in Machine Learning: Unsupervised Techniques, Lecturer, JKU Linz
  • 2019: Exercises in Theoretical Concepts of Machine Learning, Lecturer, JKU Linz
  • 2019: Lecture in Machine Learning: Supervised Techniques, Lecturer, JKU Linz
  • 2019: Exercises in Machine Learning: Supervised Techniques, Lecturer, JKU Linz
  • 2019: Lecture in Hands-on AI I, Lecturer, JKU Linz
  • 2019: Lecture in Programming in Python I, Co-Lecturer, JKU Linz
  • 2020: Lecture in Hands-on AI II, Lecturer, JKU Linz
  • 2020: Lecture in Deep Learning and Neural Nets II, Co-Lecturer, JKU Linz
  • 2020: Lecture in Hands-on AI I, Lecturer, JKU Linz
  • 2020: Exercises in Hands-on AI I, Lecturer, JKU Linz

Externe Lehre

  • ÖAW AI Summer School 2019, Deep Learning Lecture series. (Homepage)

Persönliche Daten/Ausbildung

  • Born September 25, 1989
  • BSc in Technical Physics (TU Wien), July 2012
  • MSc in Technical Physics (TU Wien), November 2014
  • PhD in High Energy Physics (Vienna Institute of High Energy Physics, TU Wien), May 2018
  • PhD Thesis