Algebra ist einer der klassischen Teilbereiche der Mathematik. Wir vertreten diesen Bereich in Forschung und Lehre und stellen damit die theoretischen Grundlagen zur Verfügung, die Anwendungen in vielen anderen Bereichen der Wissenschaft finden.
Unser Institut deckt mehrere Themen aus der Algebra ab. Ein Schwerpunkt unserer Arbeit ist die Computeralgebra, das heisst die Entwicklung von Algorithmen zur automatischen Lösung algebraischer Probleme. Ein weiterer Arbeitsschwerpunkt ist die Universelle Algebra, wo man sich mit abstrakten Verallgemeinerungen der klassischen algebraischen Strukturen beschäftigt. Ein dritter Schwerpunkt ist schließlich die Theorie der Fastringe, die in den vergangenen Jahrzehnten maßgeblich in Linz entwickelt wurde.
Institut für Algebra
Adresse
Johannes Kepler Universität Linz
Altenberger Straße 69
4040 Linz
Standort
Science Park 2, 3. Stock, Raum 372
Öffnungszeiten Sekretariat
Mo-Mi: 09.00 - 11.00 Uhr
Do: 13.00 - 15.00
Telefon
The Journal of Computational Algebra is a recently founded open access journal published by Elsevier. Its editorial board under the direction of Prof. Alexander Hulpke from Colorado State University welcomes articles on novel research about computation in, and with, algebraic or discrete structures, such that both mathematics and algorithms contribute to the new result. Prof. Kauers has just accepted an invitation to join the editorial board of this new journal. Prof. Kauers is also on the editorial boards of the Journal of Symbolic Computation, Advanced in Applied Mathematics, Annals of Combinatorics, and the Journal of Systems Science and Complexity.
Link: https://www.sciencedirect.com/journal/journal-of-computational-algebra
The next Linz Algebra Research Day takes place on December 12.
We are pleased to announce that our colleague Lixin Du has successfully defended her Ph.D. studies today. Her thesis was written under the joint supervision of Shaoshi Chen from the Chinese Academy of Sciences and Manuel Kauers, and during the time she spent in Austria, she was supported by an FWF project on integral D-finite functions. In her thesis, she explores the notion of integrality and its applications to reduction-based algorithms for symbolic integration. Some of her results have already been published at ISSAC, the annual flagship conference in the area of computer algebra. We congratulate Lixin on her achievements and are happy that she will stay at the Institute for Algebra for some more time as a postdoc.
Manuel Kauers and Jakob Moosbauer showed that 5x5 matrices mod 2 can be multiplied with only 95 multiplications.