Artificial Intelligence (VO)

This class is usually taught by Gerhard Widmer in the winter term. The class is taught in English.

Information for the current semester (if available):

{{ labelInLang('cid') }} {{ labelInLang('title') }} {{ labelInLang('registration') }} {{ labelInLang('type') }} {{ labelInLang('hours') }} {{ labelInLang('teachers') }} {{ labelInLang('rhythm') }}
{{ item._id }} ({{ item.term }}) {{ item.title }}
{{ labelInLang('moreinfo') }}
{{ labelInLang('expand') }} {{ labelInLang('collapse') }}
{{ labelInLang('register') }} {{ item.type }} {{ item['hours-per-week'] }} {{ teacher.firstname }} {{ teacher.lastname }} {{ item.teachers.teacher.firstname }} {{ item.teachers.teacher.lastname }} {{ item.rhythm }}
{{ item._id }} ({{ item.term }})
{{ labelInLang('title') }} {{ item.title }}
{{ labelInLang('moreinfo') }}
{{ labelInLang('expand') }} {{ labelInLang('collapse') }}
{{ labelInLang('registration') }} {{ labelInLang('register') }}
{{ labelInLang('type') }} {{ item.type }}
{{ labelInLang('hours') }} {{ item['hours-per-week'] }}
{{ labelInLang('teachers') }} {{ teacher.firstname }} {{ teacher.lastname }} {{ item.teachers.teacher.firstname }} {{ item.teachers.teacher.lastname }}
{{ labelInLang('rhythm') }} {{ item.rhythm }}
 

Goals and Contents of this Class

The lecture gives an introduction to basic models and techniques in the field of Artificial Intelligence (AI). Specific topics to be covered include:

  • Definitions of AI, history of AI, current state of the field
  • Motivating scenario: autonomous intelligent "agents"
  • Problem solving as a search process:
    • uninformed search algorithms
    • heuristic search algorithms
    • heuristic search in game playing
  • Knowledge representation and logical inference:
    • Propositional logic
    • First-order (predicate) logic
    • Logic as a programming language: PROLOG
  • Representing and reasoning with uncertain knowledge:
    • Basics of Bayesian probability theory
    • Knowledge representation and inference in Bayesian networks
  • Basic notions of machine learning:
    • Learning logical definitions: inductive concept learning
    • Learning strategies for intelligent action selection: reinforcement learning
    • Learning about probabilities: logistic regression and neural networks
  • Basic notions of computer perception

 

Teaching materials:

PDF versions of the Powerpoint slides used in the lecture will be made available via KUSSS (weekly).

Recommended reading (will not be needed if the lectures are attended on a regular basis):
Russell, S.J. and Norvig, P. (2000). Artificial Intelligence: A Modern Approach (2nd. Edition). Englewood Cliffs, NJ: Prentice-Hall. 
 

Exercise track (Übung)

The class is accompanied by an exercise track, in which the students will improve their understanding of the material by solving a series of theoretical and practical examples.

Be sure to also register for one of 344.021, 344.022, 344.023! 
 

Questions, suggestions, complaints, etc. to:

Gerhard Widmer
Tel. 2468-4701 
gerhard dot widmer at jku dot at