Theses and Projects

The Institute of Computational Perception continuously supervises student projects and theses at all levels (BSc, MSc, PhD) in areas like AI, machine learning (including, of course, Deep Neural Networks and Deep Reinforcement Learning), intelligent audio and music processing, multimedia, recommendation systems, biometrics, etc. (see below for details).
Interested and motivated students are invited to contact us at any time during the semester.

The following theses and practical courses are offered in every winter and summer semester:

  • BSc Project Practicum
  • MSc Project Practicum
  • Master Thesis Seminar
  • PhD Seminar

If you have further questions or if you are interested in one of our topics below (or if you want to propose your own topic) do not hesitate to get in touch with our Faculty Staff .

Selected Projects

This category comprises specific project topics that we are particularly interested in at a particular time - for instance, because they are part of a larger research project running at our institute. Sometimes, we may be able to offer financial support for these. Sometimes, this list may also be empty ...

  • Current focus 1 (WS 2019): Acoustic Event Detection, Segmentation, and Score-Performance Alignment in Opera Recordings (see Project Descriptions)
  • Current focus 2 (WS 2019): Deep Learning (Reinforcement Learning, Imitation Learning, Generative Adversarial Networks) for Acoustic Event Detection (see Project Descriptions)

If you are interested in any of these, contact Gerhard Widmer for more information.

Thematic Focus

Our project topics are structred into thematic areas, which also relate to the specific research experience and interests of our team members. Each thematic category lists a corresponding contact person.

Acoustic Scene Understanding

Our institute is heavily involved in research on acoustic scene classification and acoustic event detection (DCASE). In this context, we offer a variety of projects involving audio data and machine learning, and many different learning scenarios ((semi-)supervised, transfer learning, learning with weak labels, learning interpretable models, ...). Again, you will need some background in machine learning.

Intelligent Music Processing

As one of the leading research labs in the fields of Sound and Music Computing and Music Information Retrieval (MIR), we offer diverse topics related to AI & Music. Examples include real-time tempo and rhythm recognition, instrument detection in audio, music transcription, optical music recognition, music identification, live music tracking, but also intelligent music interfaces or ML-based models of generating music. You should have an interest, and a bit of background, in music, and at least basic knowledge of Machine Learning. See here for some examples of what we do.

Multimedia Data Mining

Analyzing and mining of large-scale datasets including multimedia content and user-generated data has become a highly active research area, often positioned at the intersection between computer science and social sciences. At CP, we offer a variety of topics related to this area. Examples include semantic analysis of text, music, video, and metadata, e.g., employing methods of unsupervised and supervised learning, content-based feature extraction, and statistical analysis. In addition, we are interested in analyzing and mining online social networks (e.g., investigating their network structure, connectivity, homophily, etc.).

Recommender Systems and User Modeling

We offer topics on all aspects of user modeling and recommender systems. Our focus is on psychologically and sociologically inspired user models, for instance, models of personality, mood, cognition, or culture. Elaborating algorithms to predict such user characteristics (for instance from user-generated data) is of particular importance for user-aware systems.

In this vein, topics can also involve developing algorithms for user-aware and context-aware recommender systems, devising methods to increase transparency of recommendations, and fusing several approaches (e.g., collaborative filtering and content-based filtering) to create hybrid recommender systems.

Image Processing

The main goal of digital image processing is to extract useful information about the objects contained in an images from an input image of potentially low quality. The steps necessary to this end (restoration, geometry correction, enhancement, segmentation, feature extraction, classification) are therefore of major interest for us at CP. Additionally we are very interested in image copyright protection (digital image watermarking)

List of Image Processing projects and topics available.

Biometric Identification

Decades ago, biometric identification methds were only used in special areas of application (forensics, access to high-security areas), but nowadays biometric identification is almost everywhere (just think about biometric passports). For us at CP, the whole variety of biometric traits (finger, face, iris, retina, hand, ear, voice, signature, gait, etc.) is of interest. 

List of Biometric Identification projects and topics available.


Cryptography („secret writing“) is a science that provides essential methods for secure communication. To be more specific, cryptographic methods can ensure confidentiality, integrity, authentication and nonrepudiation when a sender transmits a message to a recipient. At CP we are interested in all relevant cryptographic concepts, algorithms and protocols to ensure these properties for secure communication.

List of Cryptography projects and topics available.