Welcome to the Institute of Computational Perception!

We are a (still) young and growing institute with innovative projects and motivated young researchers. The focus of our research and teaching is on Artificial Intelligence and Machine Learning.

We develop and study computational models and algorithms that permit computers to perceive and 'understand' aspects of the external world, where we interpret 'perception' in the widest sense of the word, as the extraction of useful high-level information and knowledge from complex, possibly low-level data (audio, video, images, sensor data, texts, or even the Internet).

This requires fundamental and applied research on AI, machine learning, pattern recognition, text / data / social media mining, signal processing, statistical data modeling and classification.

Our current research has a particular focus on intelligent audio and music processing. Further research topics include biometrics, cryptography, personalization, and recommender systems.

Our goal is to offer state-of-the-art research and teaching in this area, and to provide a teaching environment that permits students to get involved in real research projects as early as possible.


Logo Institue of Computational Perception


Johannes Kepler Universität Linz
Altenberger Straße 69
4040 Linz


Science Park 3, 4th floor
Aubrunnerweg 3B/1


Mon-Thu: 07.30 - 15.00


+43 732 2468 4700

News & Events
News 07.01.2020

SOKO JKU: Philipp Schwarz was awarded the Adolf Adam Computer Science Prize for his program, which can read usable profiles even from badly preserved fingerprints.

Philipp Schwarz from the LIT Secure and Correct Systems Lab was pleased to be awarded first place for his master's thesis "SOKO JKU - AI for better fingerprint recognition". As always, the jury was made up of students from all over Upper Austria.

Today in lecture hall 1 the awarding of the Adolf-Adam-Informatics-Prize 2019 took place. The 4 best master theses of the year 2019 selected by a preliminary jury were presented in 10-minute lectures. We had a record attendance of about 500 students from all over Upper Austria, who acted as jury and by means of SMS voting voted Philipp Schwarz from LIT Secure and Correct Systems Lab (Master thesis at the Institute for Computational Perception) as winner.

The atmosphere was great. The students were very impressed by all the presentations. The Adam Prize is the most important PR event of our department for students.

More info:

News 27.11.2019

Best Paper Award at ISMIR2019

goes to a paper by our PhD student Stefan Lattner (Sony CSL, Paris) and
Andreas Arzt (PostDoc at our institute, now with Apple, Hamburg).

News 14.10.2019

Gerhard Widmer to give a Keynote Presentation at the Augmenting Performance Conference

Much of current research in Artificial Intelligence and Music, and particularly in the field of Music Information Retrieval (MIR), focuses on algorithms that interpret musical signals and recognise musically relevant objects and patterns at various levels – from notes to beats and rhythm, to melodic and harmonic patterns and higher-level structure -, with the goal of supporting novel applications in the digital music world. This presentation will give the audience a glimpse of what computational music perception systems can currently do with music, and what this is good for. However, we will also find that while some of these capabilities are quite impressive, they are still far from showing (or requiring) a deeper „understanding” of music. An ongoing project will be presented that aims to take AI & music research a step further, going beyond surface features and focusing on the *expressive* aspects, and how these are communicated in music. We will look at recent work on computational models of expressive music performance and some examples of the state of the art, and will discuss possible applications of this research. In the process, the audience will be subjected to a little experiment which may, or may not, yield a surprising result.

View more

News 23.09.2019

CP-JKU achieves first place in `emotion and theme recognition in music challenge, MediaEval 19

MediaEval is a benchmarking that offers challenges in multimedia retrieval, access and exploration to allow researchers working in computer science and other multimedia related field an opportunity to work on tasks that are related to human and social aspects of multimedia. MediaEval aims is to promote reproducible research that makes multimedia a positive force for society.

Emotion and theme recognition is a popular task in music information retrieval that is relevant for music search and recommendation systems. The goal of the task is to automatically recognize the emotions and themes conveyed in a music recording using machine learning algorithms.

See more here

The team of the Institute of Computational Perception, namely Khaled Koutini, Shreyan Chowdhury, Verena Haunschmid, Hamid Eghbal-zadeh, Gerhard Widmer, won the challenge by developing the highest performing models to detect emotion and themes in music.

The report detailing the work can be found here